Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T18:03:32.597Z Has data issue: false hasContentIssue false

Atomic Scale Aluminum and Strain Distribution in a Gan/AlxGa1−XN Heterostructure

Published online by Cambridge University Press:  10 February 2011

Christian Kisielowski
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720, USA
Olaf Schmidt
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley CA 94720, USA
Jinwei Yang
Affiliation:
APA Optics, Blaine, MN 55449, USA
Get access

Abstract

A GaN/AlxGalxN multi-quantum well test structure with Al concentrations 0 ≤ xAl ≤ 1 was utilized to investigate the growth of AlxGal–xN barrier layers deposited by metal organic chemical vapor deposition (MOCVD). A transition from a two dimensional (2D) to a three dimensional (3D) growth mode was observed in AlxGa1–xN barriers with XAl ≥ 0.75. It is argued that the transition occurs because of growth at temperatures that are low compared with the materials melting points Tmelt. The resulting rough AlxGa1–xN surfaces can be planarized by overgrowth with GaN. Quantitative high resolution electron microscopy (HREM) was applied to measure composition and strain profiles across the GaN/AlxGa1−xN stacks at an atomic level. The measurements reveal a substantial variation of lattice constants at the AlxGa1−xN/GaN interfaces that is attributed to an Al accumulation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) McDermott, B., Pittman, R., Gertner, E. R., Krueger, J., Kisielowski, C., Liliental-Weber, Z., Weber, E. R., These proceedingsGoogle Scholar
2) Krueger, J., Sudhir, G. S., Corlatan, D., Cho, Y., Kim, Y., Klockenbrink, R., Ruvimov, S., Liliental-Weber, Z., Kisielowski, C., Rubin, M., R.Weber, E., McDermott, B., Pittmann, R., Gertner, E. R., These proceedingsGoogle Scholar
3) Kim, Y., Klockenbrink, R., Kisielowski, C., Krueger, J., Corlatan, D., Sudhir, G. S., Peyrot, Y., Cho, Y., Rubin, M. D., R.WEber, E., These proceedingsGoogle Scholar
4) Sudhir, G. S., Peyrot, Y., Krueger, J., Kim, Y., Klockenbrink, R., Kisielowski, C., D.Rubin, M., Weber, E. R., Kriegseis, W., Meyer, B. D., These proceedingsGoogle Scholar
5) Kisielowski, C., Krueger, J., Ruvimov, S., Suski, T., Ager, J. W. III, Jones, E., Liliental-Weber, Z., Rubin, M., Weber, E. R., Bremser, M. D. and Davis, R. F., Phys. Rev. B11 54 (1996) 17745 Google Scholar
6) Kisielowski, C., Liliental-Weber, Z., Nakamura, S., Jpn. J. Appl. Phys. 36 (1997)Google Scholar
7) Kisielowski, C., Schmidt, O., Luysberg, M., Liliental-Weber, Z., to be publishedGoogle Scholar
8) Yu, E. T., Sullivan, G. J., Asbeck, P. M., Wang, C. D., Qiao, D., Lau, S. S., Appl. Phys. Let. 71 (1997) 2794 Google Scholar
9) Yang, J., private communicationGoogle Scholar
10) Fujii, H., Kisielowski, C., Krueger, J., Leung, M. S. H., Klockenbrink, R., Rubin, M. and Weber, E. R., Mat. Res. Symp. Proc. MRS, 449, 1997, 227 Google Scholar
11) Schwander, P., Kisielowski, C., Baumann, F. H., Kim, Y., Ourmazd, A., Phys. Rev. Let. 71, 1993, 4150 Google Scholar
12) Seitz, H., Seibt, M., Baumann, F. H., Ahlbom, K. et al., phys. stat. sol. (a) 150 (1995) 625 Google Scholar