Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T17:38:44.626Z Has data issue: false hasContentIssue false

Atomic Resolution Electronic Structure Using Spatially Resolved Electron Energy Loss Spectroscopy

Published online by Cambridge University Press:  21 February 2011

P.E. Batson*
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, New York, 10598
Get access

Abstract

Electronic structure in small areas is obtainable by inspection of near edge fine structure of core excitations. We can accomplish this today with near atomic resolution, using EELS at high energy. At IBM, we have obtained results using a sub-0.2nm probe at 120KeV with enough current to allow 200meV resolution studies at the Si L2,3 edge. It is especially crucial for Si-based structures that this allows us to obtain Z-contrast dark field images of the Si lattice at an acceleration voltage that is low enough to minimize radiation damage, but with a high enough current to allow good quality spectra to be obtained. A review of instrumental requirements, spectral interpretation, and applications to Si-Ge alloys is presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ismail, K., Nelson, S.F., Chu, J.O., and Meyerson, B.S., J. Appl. Phys., 63 660 (1993).Google Scholar
2. Crewe, A.V., Isaacson, M. and Johnson, D., Rev. Sci. Inst. 42 411 (1971).Google Scholar
3. Pennycook, S.J., and Boatner, L.A., Nature 336 565 (1988).Google Scholar
4. Loane, R.F., Kirkland, E.J., and Silcox, J., Act. Crys. A44 912 (1988).Google Scholar
5. Batson, P.E., Rev. Sci. Inst., 57 43 (1986).CrossRefGoogle Scholar
6. Curtis, G.H. and Silcox, J., Rev. Sci. Inst., 42 630 (1971).CrossRefGoogle Scholar
7. Isaacson, M. and Johnson, D., Ultramicroscopy 1 33 (1975).Google Scholar
8. Scheinfein, M., in Physical Aspects of Microscopic Characterization of Materials, edited by Kirschner, J., Murata, K., and Venables, J.A., (Scanning Microscopy Supplement 1, Scanning Microscopy International, Chicago, 1987), pp. 161177.Google Scholar
9. Batson, P.E., Ultramicroscopy, 50 1 (1993).Google Scholar
10. Batson, P.E., Ultramicroscopy, 47 133 (1992).Google Scholar
11. Batson, P.E. and Bruley, J., Phys. Rev. Lett., 67 350 (1991).Google Scholar
12. Batson, P.E., Phys. Rev. B, 47 6898 (1993).Google Scholar
13. Shuman, H. and Kruit, P. Rev. Sci. Inst., 56 231 (1985).CrossRefGoogle Scholar
14. Batson, P.E., Rev. Sci. Inst., 59 1132 (1988).Google Scholar
15. Batson, P.E., Mat. Sci. and Eng. B, 14 297 (1992).CrossRefGoogle Scholar
16. Batson, P.E., Johnson, D.W., and Spence, J.C.H., Ultramicroscojpy, 41 137 (1992).CrossRefGoogle Scholar
17. Weng, X., Rez, P., and Batson, P.E., Sol. Stat. Comm., 74 1013 (1990).Google Scholar
18. Morar, J.F., Batson, P.E. and Tersoff, J., Phys. Rev. B, 47 4107 (1993).Google Scholar
19. Weber, J. and Alonso, M., Phys. Rev. B 40 5683 (1989).Google Scholar
20. Walle, C. Van de, Phys. Rev. B 39 1871 (1989).CrossRefGoogle Scholar
21. Batson, P.E. and Morar, J.F., Phys. Rev. Lett., 71 609 (1993).CrossRefGoogle Scholar
22. Batson, P.E., Nature, in press.Google Scholar
23. Batson, P.E. and Heath, J.R., Phys. Rev. Lett., 71 911 (1993).CrossRefGoogle Scholar
24. Batson, P.E. Phys. Rev. B 48 2608 (1993).Google Scholar