Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T10:32:12.636Z Has data issue: false hasContentIssue false

Atomic Profiles and Electrical Characteristics of Very High Energy (8–20 MeV) Si Implants in GaAs

Published online by Cambridge University Press:  25 February 2011

Phillip E. Thompson
Affiliation:
Naval Research Laboratory, Washington DC 20375-5000
Harry B. Dietrich
Affiliation:
Naval Research Laboratory, Washington DC 20375-5000
James M. Eridon
Affiliation:
Naval Research Laboratory, Washington DC 20375-5000
Thomas Gresko
Affiliation:
Department of Physics, George Mason University, Fairfax, VA 22030
Get access

Abstract

High energy Si implantation into GaAs is of interest for the fabrication of fully implanted, monolithic microwave integrated circuits. Atomic concentration profiles of 8, 12, 16, and 20 MeV Si have been measured using SIMS. The range and shape parameters have been determined for each energy. The theoretical atomic concentration profile for 12 MeV Si calculated using TRIM-88 corresponded to the SIMS experimental profile. No redistribution of the Si was observed for either furnace anneal, 825° C, 15 min, or rapid thermal anneal, 1000°C, 10 s. The activation of the Si improved when co-implanted with S. The co-implanted carrier concentration profiles did not show dopant diffusion. Peak carrier concentration of 2×1018/cm3 was obtained with a Si and S dose of 1.5×104/cm2, each.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Thompson, P. E., Wilson, R. G., Ingram, D. C., and Pronko, P. P. in Materials Modification and Growth Using Ion Beams, edited by Gibson, U., Pronko, P. P., and White, A. E. (Mater Res. Soc. Proc. 93 Pittsburgh, PA 1987) pp. 7377.Google Scholar
2. Thompson, P. E., Wilson, R. G., Ingram, D. C., and Pronko, P. P., accepted for publication in the J. Appl. Phys.Google Scholar
3. Thompson, P. E., Dietrich, H. B., and Ingram, D. C., Nucl. Instr. and Meth. B6, 287 (1985)Google Scholar
4. Thompson, P. E., Dietrich, H. B., Spencer, M., and Ingram, D. C., SPIE 530, 35 (1985).Google Scholar
5. Krowne, C. M. and Thompson, P. E., Solid State-Electron. 30. 497 (1987).Google Scholar
6. Thompson, P. E., Dietrich, H. B., Anand, Y., Higgins, V., and Hillson, J., Electronics Letters 23, 725 (1987).Google Scholar
7. Gibbons, J. F. and Mylroie, S., Appl. Phys. Lett. 22, 568 (1973).Google Scholar
8. Hofker, W. K., Phillips Research Reports Supplements, 8, 41 (1975).Google Scholar
9. Hofker, W. K., Oosthoek, D. P., Koeman, N. J.,, and Grefte, H. A. M. De, Rad. Effects 24, 223 (1975).CrossRefGoogle Scholar
10. Wilson, R. G., Rad. Effects 46, 141 (1980).Google Scholar
11. Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping Power and Range of Ions in Solids (Pergammon Press Inc., New York, 1985).Google Scholar
12. Pearton, S. J. and Cummings, K. D., J. Appl. Phys. 58(14), 1500 (1985).Google Scholar
13. Wilson, R. G. and Jamba, D. M., Appl. Phys. Lett. 39, 715 (1981).CrossRefGoogle Scholar
14. Bhattacharya, R. S., Pronko, P. P., and Ling, S. C., Appl. Phys. Lett. 42 42(10)., 880 (1983).Google Scholar