No CrossRef data available.
Article contents
Atomic Oxygen Plasma Effects on CVD Deposited Diamond-Like Carbon Films*
Published online by Cambridge University Press: 28 February 2011
Abstract
CVD deposited diamond-like carbon (DLC) films have been studied for possible use as a secondary standard for Low Earth Orbit materials degradation. Samples of various thicknesses have been exposed to a simulated Low Earth Orbit atomic oxygen (AO) environment using a plasma asher. Mass loss measurements indicate that DLC degrades at a rate of 0.7 mg/hr which is two to three times the rate of currently used Kapton samples which degrade at a rate of.3 mg/hr. Thickness measurements show that DLC thins at a rate of 77 Angstroms/min. Since DLC is not as susceptible to environmental factors such as moisture absorption, it could potentially provide more accurate measurements of AO fluence on short space flights. Adhesion of DLC films to both fused silica and crystalline silicon substrates has been studied under thermal cycling conditions. Film adhesion to fused silica can be enhanced by sputtering a thin layer of silicon dioxide onto the substrate prior to deposition. In addition to the above, the index of refraction and extinction coefficient of various thicknesses of DLC films has been characterized by Variable Angle Spectroscopic Ellipsometry.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1992
Footnotes
Research supported by NASA Lewis Research Center Grant NAG-3–95.