Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T23:47:33.264Z Has data issue: false hasContentIssue false

Atomic Layer Growth of SiO2 on Si(100) Using the Sequential Deposition of SiCl4 and H2O

Published online by Cambridge University Press:  22 February 2011

Ofer Sneh
Affiliation:
University of Colorado, Department of Chemistry and Biochemistry, Boulder, CO 80309
Michael L. Wise
Affiliation:
University of Colorado, Department of Chemistry and Biochemistry, Boulder, CO 80309
Lynne A. Okada
Affiliation:
University of Colorado, Department of Chemistry and Biochemistry, Boulder, CO 80309
Andrew W. Ott
Affiliation:
University of Colorado, Department of Chemistry and Biochemistry, Boulder, CO 80309
Steven M. George
Affiliation:
University of Colorado, Department of Chemistry and Biochemistry, Boulder, CO 80309
Get access

Abstract

This study explored the surface chemistry and the promise of the binary reaction scheme:

(A) Si-OH+SiCl4 → Si-Cl + HCl

(B) Si-Cl + H2O → Si-OH + HCl

for controlled SiO2 film deposition. In this binary ABAB… sequence, each surface reaction may be self-terminating and ABAB… repetitive cycles may produce layer-by-layer controlled deposition. Using this approach, the growth of SiO2 thin films on Si(100) with atomic layer control was achieved at 600 K with pressures in the 1 to 50 Torr range. The experiments were performed in a small high pressure cell situated in a UHV chamber. This design couples CVD conditions for film growth with a UHV environment for surface analysis using laser-induced thermal desorption (LITD), temperature-programmed desorption (TPD) and Auger electron spectroscopy (AES). The controlled layer-by-layer deposition of SiO2 on Si(100) was demonstrated and optimized using these techniques. A stoichiometric and chlorine-free SiO2 film was also produced as revealed by TPD and AES analysis. SiO2 growth rates of approximately 1 ML of oxygen per AB cycle were obtained at 600 K. These studies demonstrate the methodology of using the combined UHV/high pressure experimental apparatus for optimizing a binary reaction CVD process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Venkatesan, T., Thin Solid Films 216, 52 (1992).CrossRefGoogle Scholar
2. Workshop Explores Commercial and Scientific Opportunities for Future Thin Film Research and Technology, Thin Solid Films 216, ix (1992).Google Scholar
3. Goodman, C. H. L. and Pessa, M. V., J. Appl. Phys. 60, R65 (1986).Google Scholar
4. Fan, J. F., Sugioka, K. and Toyoda, K., Jap. J. Appl. Phys. 6B, LI 139 (1991).Google Scholar
5. Soto, C. and Tysoe, T., J. Vac. Sci. Technol. A 9, 2686 (1991).CrossRefGoogle Scholar
6. Higashi, G. S. and Fleming, C. G., Appl. Phys. Lett. 55, 1963 (1989).CrossRefGoogle Scholar
7. Haukka, S., Lakomaa, E. L. and Suntola, T., Thin Solid Films 225, 280 (1993).CrossRefGoogle Scholar
8. Ritala, M., Leskelä, M., Nykänen, E., Soininen, P. and Niinistö, L., Thin Solid Films 225, 288 (1993).CrossRefGoogle Scholar
9. Gates, S. M., Koleske, D. D., Heath, J. R. and Copel, M., Appl. Phys. Lett. 62, 510 (1993).Google Scholar
10. Yarmoff, J. A., Shuh, D. K., Durbin, T. D., Lo, C. W., Lapiano-Smith, D. A., McFeely, F. R. and Himpsel, F. J., J. Vac. Sci. Technol. A 10, 2303 (1992).Google Scholar
11. Dillon, A. C., Robinson, M. B., Han, M. Y. and George, S. M., J. Electrochem. Soc. 139, 537 (1992).Google Scholar
12. Ehrlich, D. J. and Melngailis, J., Appl. Phys. Lett. 58, 2675 (1991).CrossRefGoogle Scholar
13. Tsapatsis, M., Kim, S., Nam, S. W. and Gavalas, G. R., Ind. Eng. Chem. Res. 30, 2152 (1991).Google Scholar
14. Tsapatsis, M., and Gavalas, G. R., AIChE J. 38, 847 (1992).Google Scholar
15. Kohler, B. G., Mak, C. H., Arthur, D. A., Coon, P. A. and George, S. M., J. Chem. Phys. 89, 1709 (1988).Google Scholar
16. Somorjai, G. A., Surf. Sci. 89, 496 (1979).CrossRefGoogle Scholar
17. Cabrera, A. L., Spencer, N. D., Kozak, E. I., Davies, P. W. and Somorjai, G. A., Rev. Sci. Instrum. 53, 1888 (1982).Google Scholar
18. Blakely, D. W., Kozak, E. I., Sexton, B. A. and Somorjai, G. A., J. Vac. Sci. Technol. 13, 1091 (1976).Google Scholar
19. Koel, B. E., Bent, B. E. and Somorjai, G. A., Surf. Sci. 146,211 (1984).Google Scholar
20. Campbell, R. A. and Goodman, D. W., Rev. Sci. Instrum. 63, 172 (1992).Google Scholar
21. Campbell, J. M. and Campbell, C. T., Surf. Sci. 259, 1 (1991).Google Scholar
22. White, G. K., Experimental Techniques in Low-Temperature Physics, 3rd ed. (Clarendon Press, Oxford 1979), p. 150.Google Scholar
23. Kobayashi, Y. and Sugii, K., J. Vac. Sci. Technol. A 10, 2308 (1992).CrossRefGoogle Scholar
24. Derrienand, J. Commandre, M., Surf. Sci. 118,32 (1982).Google Scholar
25. Wise, M. L., Gupta, P., Mak, C. H., Coon, P. A. and George, S. M., in preparation.Google Scholar