Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T15:48:07.547Z Has data issue: false hasContentIssue false

Atomic Layer Deposition on Quantities of Multiwalled Carbon Nanotubes

Published online by Cambridge University Press:  01 February 2011

Andrew S. Cavanagh
Affiliation:
[email protected], University of Colorado, Dept. of Physics, Boulder, CO, 80309, United States
Christopher A. Wilson
Affiliation:
[email protected], University of Colorado, Dept. of Chemistry and Biochemistry, Boulder, CO, 80309, United States
Alan W. Weimer
Affiliation:
[email protected], University of Colorado, Dept. of Chemical and Biological Engineering, Boulder, CO, 80309, United States
Steven M. George
Affiliation:
[email protected], University of Colorado, Dept. of Chemistry and Biochemistry, Boulder, CO, 80309, United States
Get access

Abstract

Atomic layer deposition (ALD) was performed on quantities of multiwalled carbon nanotubes (MWCNTs) in a rotary reactor. Because of nucleation difficulties, Al2O3 ALD grew as nanospheres on the MWCNTs. After a NO2 nucleation treatment, Al2O3 ALD films grew conformally and noncovalently functionalized the surface of the MWCNT. This Al2O3 ALD film served as a platform for the growth of W ALD metal. The uncoated and ALD-coated MWCNTs were characterized with transmission electron microscopy and x-ray photoelectron spectroscopy. This study demonstrates that ALD can be performed on quantities of very high surface area MWCNT substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 George, S.M., Ott, A.W. and Klaus, J.W., Journal of Physical Chemistry 100, 13121 (1996).Google Scholar
2 Suntola, T., Thin Solid Films 216, 84 (1992).Google Scholar
3 Puurunen, R.L., Journal of Applied Physics 97, 52 (2005).Google Scholar
4 Elam, J.W., Routkevitch, D., Mardilovich, P.P. and George, S.M., Chemistry of Materials 15, 3507 (2003).Google Scholar
5 Farmer, D.B. and Gordon, R.G., Nano Letters 6, 699 (2006).Google Scholar
6 Herrmann, C.F., Fabreguette, F.H., Finch, D.S., Geiss, R. and George, S.M., Applied Physics Letters 87, 3 (2005).Google Scholar
7 Lee, J.S., Min, B., Cho, K., Kim, S., Park, J., Lee, Y.T., Kim, N.S., Lee, M.S., Park, S.O. and Moon, J.T., Journal of Crystal Growth 254, 443 (2003).Google Scholar
8 Farmer, D.B. and Gordon, R.G., Electrochemical and Solid State Letters 8, G89 (2005).Google Scholar
9 Ramasubramaniam, R., Chen, J. and Liu, H.Y., Applied Physics Letters 83, 2928 (2003).Google Scholar
10 Thostenson, E.T., Ren, Z.F. and Chou, T.W., Composites Science and Technology 61, 1899 (2001).Google Scholar
11 Coleman, J.N., Khan, U., Blau, W.J. and Gun-ko, Y.K., Carbon 44, 1624 (2006).Google Scholar
12 Lau, K.T., Gu, C. and Hui, D., Composites Part B-Engineering 37, 425 (2006).Google Scholar
13 Breuer, O. and Sundararaj, U., Polymer Composites 25, 630 (2004).Google Scholar
14 Tasis, D., Tagmatarchis, N., Bianco, A. and Prato, M., Chemical Reviews 106, 1105 (2006).Google Scholar
15 Bahr, J.L. and Tour, J.M., Chemistry of Materials 13, 3823 (2001).Google Scholar
16 Chen, J., Liu, H.Y., Weimer, W.A., Halls, M.D., Waldeck, D.H. and Walker, G.C., Journal of the American Chemical Society 124, 9034 (2002).Google Scholar
17 Hernadi, K., Fonseca, A., Nagy, J.B., Bernaerts, D., Fudala, A. and Lucas, A.A., Zeolites 17, 416 (1996).Google Scholar
18 Ye, Y., Ahn, C.C., Witham, C., Fultz, B., Liu, J., Rinzler, A.G., Colbert, D., Smith, K.A. and Smalley, R.E., Applied Physics Letters 74, 2307 (1999).Google Scholar
19 Rodriguez, N.M., Journal of Materials Research 8, 3233 (1993).Google Scholar
20 McCormick, J.A., Cloutier, B.L., Weimer, A.W. and George, S.M., Journal of Vacuum Science & Technology A 25, 67 (2007).Google Scholar
21 Wank, J.R., George, S.M. and Weimer, A.W., Powder Technology 142, 59 (2004).Google Scholar
22 Wank, J.R., George, S.M. and Weimer, A.W., Journal of the American Ceramic Society 87, 762 (2004).Google Scholar
23 McCormick, J.A., Rice, K.P., Paul, D.F., Weimer, A.W. and George, S.M., Chemical Vapor Deposition 13, 491 (2007).Google Scholar
24 Dillon, A.C., Ott, A.W., Way, J.D. and George, S.M., Surface Science 322, 230 (1995).Google Scholar
25 Groner, M.D., Fabreguette, F.H., Elam, J.W. and George, S.M., Chemistry of Materials 16, 639 (2004).Google Scholar
26 Ott, A.W., Klaus, J.W., Johnson, J.M. and George, S.M., Thin Solid Films 292, 135 (1997).Google Scholar
27 Klaus, J.W., Ferro, S.J. and George, S.M., Thin Solid Films 360, 145 (2000).Google Scholar
28 Grubbs, R.K., Steinmetz, N.J. and George, S.M., Journal of Vacuum Science & Technology B 22, 1811 (2004).Google Scholar
29 Fabreguette, F.H., Sechrist, Z.A., Elam, J.W. and George, S.M., Thin Solid Films 488, 103 (2005).Google Scholar
30 Ahn, C.H., Anczykowski, B., Atashbar, M.Z., Bacsa, W., Bainbridge, W.S., Baldi, A., Barnes, P.D., Batteas, J., Bennewitz, R. and Bhushan, B., Springer handbook of nanotechnology. 2nd ed, ed. Bhushan, B.. 2007), New York: Springer.Google Scholar
31 Ferguson, J.D., Weimer, A.W. and George, S.M., Thin Solid Films 371, 95 (2000).Google Scholar
32 Cumpson, P.J., Surface and Interface Analysis 29, 403 (2000).Google Scholar
33 Solina, D.M., Cheary, R.W., Lupscha, F.A. and Swift, P.D., An Investigation of Metal Thin Films Using X-ray Reflectivity and Atomic Force Microscopy. 1997): JCPDS-International Centre for Diffraction Data.Google Scholar