Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T15:46:50.497Z Has data issue: false hasContentIssue false

Atomic Layer Deposition of thin Films Using Sequential Surface Reactions

Published online by Cambridge University Press:  10 February 2011

S. M. George
Affiliation:
Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309, [email protected]
J.D. Ferguson
Affiliation:
Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309
J.W. Klaus
Affiliation:
Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309
Get access

Abstract

Thin films can be deposited with atomic layer control using sequential surface reactions. The atomic layer deposition (ALD) of compound and single-element films can be accomplished using the appropriate surface chemistry. This paper reviews the ALD of dielectric alumina (Al2O3) films and conducting tungsten (W) films. The Al2O3 films are deposited on submicron BN particles and the surface chemistry is monitored using Fourier transform infrared (FTIR) spectroscopy. Additional transmission electron microscopy (TEM) studies investigated the conformality of the Al2O3 growth on the BN particles. FTIR investigations of the surface chemistry during W ALD are performed on nanometer-sized Si02 particles. Additional in situ spectroscopy ellipsometry studies of W ALD on Si(100) established the W ALD growth rates. Al2O3 and W ALD both illustrate the potential of ALD to obtain conformal and atomic layer controlled thin film growth using sequential surface reactions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] George, S. M., Ott, A. W., Klaus, J. W., J. Phys. Chem. 100, 13121 (1996).10.1021/jp9536763Google Scholar
[2] Berland, B. S., Gartland, I. P., Ott, A. W., George, S. M., Chem. Mater. 10, 3941 (1998).10.1021/cm980384gGoogle Scholar
[3] Ott, A. W., Klaus, J. W., Johnson, J. M., George, S. M., Thin Solid Films 292, 135 (1997).10.1016/S0040-6090(96)08934-1Google Scholar
[4] Ritala, M., Leskela, M., Dekker, J. P., Mutsaers, C., Soininen, P. J., J. Skarp, Chem. Vap. Dep. 5, 7 (1999).10.1002/(SICI)1521-3862(199901)5:1<7::AID-CVDE7>3.0.CO;2-J3.0.CO;2-J>Google Scholar
[5] Dillon, A. C., Ott, A. W., Way, J. D., George, S. M., Surf. Sci. 322, 230 (1995).10.1016/0039-6028(95)90033-0Google Scholar
[6] Higashi, G. S., Fleming, C. G., Appl. Phys. Lett. 55, 1963 (1989).10.1063/1.102337Google Scholar
[7] Kodas, T., Hampden-Smith, M., The Chemistry of Metal CVD (VCH, New York, 1994).10.1002/9783527615858Google Scholar
[8] Bell, D. A., McConica, C. M., Baker, K. L., Kuchta, E., J. Electrochem. Soc. 143, 296 (1996).10.1149/1.1836426Google Scholar
[9] Kobayashi, N., Nakamura, Y., Goto, H., Homma, Y., J. Appl. Phys. 73, 4637 (1993).10.1063/1.352758Google Scholar
[10] Kobayashi, N., Goto, H., Suzuki, M., J. Appl. Phys. 69, 1013 (1991).10.1063/1.347416Google Scholar
[11] Klaus, J.W., Ferro, S.J. and George, S.M., Thin Solid Films 360, 145 (2000).10.1016/S0040-6090(99)01076-7Google Scholar
[12] Dillon, A. C., Robinson, M. B., Han, M. Y., George, S. M., J. Electrochem. Soc. 139, 537 (1992).10.1149/1.2069252Google Scholar
[13] Ballinger, T. H., Wong, J. C. S., Yates, J. T., Langmuir 8, 1676 (1992).10.1021/la00042a031Google Scholar
[14] Ferguson, J.D., Weimer, A.W. and George, S.M., Thin Solid Films (2000) in press.Google Scholar
[15] Baraton, M. I., Merle, T., Quintard, P., Lorenzelli, V., Langmuir 9, 1486 (1993).10.1021/la00030a011Google Scholar
[16] Baraton, M. I., Boulanger, L., Cauchetier, M., Lorenzelli, V., Luce, M., Merle, T., Quintard, P., Zhou, Y. H., J. Eur. Ceram. Soc. 13, 371 (1994).10.1016/0955-2219(94)90013-2Google Scholar