Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T14:56:58.340Z Has data issue: false hasContentIssue false

Atomic Layer Deposition of SrO: Substrate and Temperature Effects

Published online by Cambridge University Press:  03 January 2013

Han Wang
Affiliation:
Department of Chemical, Materials & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269.
Xiaoqiang Jiang
Affiliation:
Department of Chemical, Materials & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269.
Brian G. Willis
Affiliation:
Department of Chemical, Materials & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269.
Get access

Abstract

The atomic layer deposition (ALD) of SrO was conducted on various oxide surfaces by using strontium bis(tri-isopropylcyclopentadienyl) and water at deposition temperatures of 200 and 250°C. The initial and steady growth behaviors were studied by in-situ spectroscopic ellipsometry and ex-situ X-ray photoelectron spectroscopy. For initial growth, the growth per cycle (GPC) of SrO not only depends on the concentration of hydroxyl groups but also the formation of interfacial Sr-O-Si bonds. For the steady growth, in-situ annealing was used to enhance the growth rate and multiple growth regions were identified.

Type
Articles
Copyright
Copyright © Materials Research Society 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Puurunen, R., J. App. Phys. 97, 121301 (2005)CrossRefGoogle Scholar
Green, M., Ho, M., Busch, B., Wilk, G., Sorsch, T., Conard, T., Brijs, B., Vandervorst, W., Raisanen, P., Muller, D., Bude, M., and Grazul, J., J. Appl. Phys. 92, 7168 (2002).CrossRefGoogle Scholar
Rahtu, A., Hanninen, T., and Ritala, M., J. Phys. IV 11, 923 (2001).Google Scholar
Methaapanon, R. and Bent, S., J. Phys. Chem. C 114, 10498 (2010).CrossRefGoogle Scholar
Riedel, S., Neidhardt, J., Jansen, S., Wilde, L., Sundqvist, J., Erben, E., Teichert, S., and Michaelis, A., J. Appl. Phys. 109, 094101 (2011).CrossRefGoogle Scholar
McKee, R., Walker, F., and Chisholm, M., Phys. Rev. Lett. 81, 3014 (1998).CrossRefGoogle Scholar
Hu, X., Li, H., Liang, Y., Wei, Y., Yu, Z., Marshall, D., Edwards, J., Droopad, R., Zhang, X., Demkov, A., and Moore, K., App. Phys. Lett. 82, 203 (2003).CrossRefGoogle Scholar
Kazzi, M., Delhaye, G., Merckling, C., Bergignat, E., Robach, Y., Grenet, G., and Hollinger, G., J. Vac. Sci. Technol. A 25, 1505 (2007).CrossRefGoogle Scholar
Zhang, C., Wielunskib, L., and Willis, B., Appl. Surf. Sci. 257, 4826 (2011).CrossRefGoogle Scholar
Marchiori, C., Frank, M., Bruley, J., Narayanan, V., and Fompeyrine, J., Appl. Phys. Lett. 98, 052908 (2011).CrossRefGoogle Scholar
Wang, H., Qiang, X., and Willis, B., J. Vac. Sci. Technol. A 30, 01A133 (2012).CrossRefGoogle Scholar
Kim, S., Hoffmann-Eifert, S., Reiners, M., and Waser, R., J. Electrochem. Soc. 158, D6 (2011).CrossRefGoogle Scholar
Vehkamaki, M., Ph.D. thesis (University of Helsinki, 2007).Google Scholar