Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T10:46:29.300Z Has data issue: false hasContentIssue false

Atomic Layer Deposition of Ruthenium Films on Hydrogen terminated Silicon

Published online by Cambridge University Press:  31 January 2011

Sun Kyung Park
Affiliation:
[email protected], University of Texas at Dallas, Department of Materials Science and Engineering Department, Richardson, Texas, United States
K. Roodenko
Affiliation:
[email protected], University of Texas at Dallas, Department of Materials Science and Engineering Department, Richardson, Texas, United States
Yves J. Chabal
Affiliation:
[email protected], University of Texas at Dallas, Department of Materials Science and Engineering, Richardson, Texas, United States
L. Wielunski
Affiliation:
[email protected], Rutgers University, Laboratory for Surface Modification, Piscataway, New Jersey, United States
R. Kanjolia
Affiliation:
[email protected], SaFC Hitech., Haverhill, Massachusetts, United States
J. Anthis
Affiliation:
[email protected], SAFC Hitech., Haverhill, Massachusetts, United States
R. Odedra
Affiliation:
[email protected], SAFC Hitech., Haverhill, Massachusetts, United States
N. Boag
Affiliation:
[email protected], University of Salford, Functional materials, Institute for Materials reasearch, Salford, Manchester, United Kingdom
Get access

Abstract

Atomic Layer deposition of thin Ruthenium films has been studied using a newly synthesized precursor (Cyclopentadienyl ethylruthenium dicarbonyl) and O2 as reactant gases. Under our experimental conditions, the film comprises both Ru and RuO2. The initial growth is dominated by Ru metal. As the number of cycles is increased, RuO2 appears. From infrared broadband absorption measurements, the transition from isolated, nucleated film to a continuous, conducting film (characterized by Drude absorption) can be determined. Optical simulations based on an effective-medium approach are implemented to simulate the in-situ broadband infrared absorption. A Lorentz oscillator model is developed, together with a Drude term for the metallic component, to describe optical properties of Ru/RuO2 growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Papadatos, F. Spyridon, S. Zubin, P. Steven, C. and Eric, E. Mat. Res. Soc. Symp. Proc. 716, B2.4.1-B.2.4.5 (2002).Google Scholar
2 Aaltonen, T. Al, P. Ritala, M. and Leskel, M. Chemical Vapor Deposition 9, 4549 (2003).Google Scholar
3 Kwon, O.-K. Kwon, S.-H., Park, H.-S., and Kang, S.-W., Journal of The Electrochemical Society 151, C753–C756 (2004).Google Scholar
4 Kwon, O.-K., Kim, J.-H., Park, H.-S., and Kang, S.-W., Journal of The Electrochemical Society 151, G109–G112 (2004).Google Scholar
5 Tomonori, A. Masahiro, K. Soichi, Y. and Kazuhiro, E. Jpn. J. Phys. 38, 21942199 (1999).Google Scholar
6 Kang, S. Y. Choi, K. H. Lee, S. K. Hwang, C. S. and Kim, H. J. Journal of The Electrochemical Society 147, 11611167 (2000).Google Scholar
7 Yim, S.-S., Lee, D.-J., Kim, K.-S., Lee, M.-S., Kim, S.-H., and Kim, K.-B., Electrochemical and Solid-State Letters 11, K89–K92 (2008).Google Scholar
8 Kang, S. Y. Hwang, C. S. and Kim, H. J. Journal of The Electrochemical Society 152, C15–C19 (2005).Google Scholar
9 Aaltonen, T. Ritala, M. Arstila, K. Keinonen, J. and Leskel, M. Chemical Vapor Deposition 10, 215219 (2004).Google Scholar
10 Lai, Y.-H., Chen, Y.-L., Chi, Y. Liu, C.-S., Carty, A. J. Peng, S.-M., and Lee, G.-H., Journal of Materials Chemistry 13, 19992006 (2003).Google Scholar
11 Park, S.-E., Kim, H.-M., Kim, K.-B., and Min, S.-H., Thin Solid Films 341, 5254 (1999).Google Scholar
12 Higashi, G. S. Chabal, Y. J. Trucks, G. W. and Raghavachari, K. Appl. Phys. Lett. 56, 656 (1990).Google Scholar
13 Wang, Y. Dai, M. Ho, M.-T., Wielunski, L. S. and Chabal, Y. J. Appl. Phys. Lett. 90, 022906 (2007).Google Scholar
14 Hones, P. Gerfin, T. and Gratzel, M. Applied Physics Letters 67, 30783080 (1995).Google Scholar
15 Norrman, S. Andersson, T. Granqvist, C. G. and Hunderi, O. Physical Review B 18, 674 (1978).Google Scholar
16 Choi, W. S. Seo, S. S. A., Kim, K. W. Noh, T. W. Kim, M. Y. and Shin, S. Physical Review B (Condensed Matter and Materials Physics) 74, 205117–8 (2006).Google Scholar
17 Bashara, N. M. and Azzam, R. M. A. in Ellipsometry and Polarized Light, 3rd ed. (Elsevier Science Amsterdam, 1989).Google Scholar
18 Potter, R. F. in Handbook of optical solids (Academic Press San Diego, 1985).Google Scholar
19 Harbecke, B. Appl. Phys. B. 39, 165 (1986).Google Scholar
20 Park, S. K. Roodenko, K. Chabal, Y. J. Kanjolia, R. Anthis, J. Odedra, R. and Boag, N. (Unpublished).Google Scholar
21 Aaltonen, T. Rahtu, A. Ritala, M. and Leskela, M. Electrochemical and Solid-State Letters 6, C130–C133 (2003).Google Scholar
22 Kim, S. K. Lee, S. Y. Lee, S. W. Hwang, G. W. Hwang, C. S. Lee, J. W. and Jeong, J. Journal of The Electrochemical Society 154, D95–D101 (2007).Google Scholar
23 Matsui, Y. Hiratani, M. Nabatame, T. Shimamoto, Y. and Kimura, S. Electrochemical and Solid-State Letters 4, C9–C12 (2001).Google Scholar