Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T04:09:43.743Z Has data issue: false hasContentIssue false

Atomic layer deposition of nanoparticles on self-assembled monolayer modified silicon substrate

Published online by Cambridge University Press:  17 May 2013

Kun Cao
Affiliation:
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering,
Zhilong Ren
Affiliation:
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering,
Shengmei Xiang
Affiliation:
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering,
Bin Shan
Affiliation:
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering,
Rong Chen*
Affiliation:
State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei PR China 430074
*
*Corresponding author: [email protected]
Get access

Abstract

Atomic layer deposition has attracted much attention recently in fabricating noble metal nanoparticles for a wide range of applications. We have explored synthesizing palladium nanoparticles via atomic layer deposition on self-assembled monolayers modified silicon substrate. Using alkyltrichlorosilanes as the passivating agents, our results show the method is capable of fabricating Pd nanoparticles with well controlled density and particle diameter on the modified silicon substrate.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

Astruc, D., Nanoparticles and Catalysis; Wiley-VCH: New York (2008)Google Scholar
Thotiyl, M.M.O., Kumar, T.R., Sampath, S., J. Phys. Chem. C 114, 17934 (2010)CrossRefGoogle Scholar
Sarapuu, A., Kasikov, A., Wong, N., Lucas, C.A., Sedghi, G., Nichols, R.J., Tammeveski, K., Electrochim. Acta 55, 6768 (2010)CrossRefGoogle Scholar
Feng, H., Elam, J.W., Libera, J.A., and Stair, P.C., Chem. Mater. 22, 3133 (2010)CrossRefGoogle Scholar
Summers, J.C., Ausen, S.A., J. Catal. 52, 445 (1978)CrossRefGoogle Scholar
Toebes, M.L., van Dillen, J.A., de jong, K.P., J. Mol. Catal. A: Chem. 173, 75 (2001)CrossRefGoogle Scholar
George, S.M., Chem. Rev. 110, 111 (2010)CrossRefGoogle Scholar
Ritala, M., Kukli, K., Rahtu, A., Ralsanen, P.I., eskla, M.L, Sajavaara, T., Keinonen, J., Science. 288, 319 (2000)CrossRefGoogle Scholar
Puurunen, Riikka L., J. Appl. Phys. 97, 121301 (2005)CrossRefGoogle Scholar
Christensen, S.T., Elam, J.W., Rabuffetti, F.A., Ma, Q., Weigand, S.J., Lee, B., Seifert, S., Stair, P.C., Poeppelmeier, K.R., Hersam, M.C., Bedzyk, M.J., Small 5, 750 (2009)CrossRefGoogle Scholar
Christensen, S.T., Feng, H., Libera, J.L., Guo, N., Miller, J.T., Stair, P.C., Elam, J.W., Nano Lett. 10, 3047 (2010)CrossRefGoogle Scholar
Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., and Whitesides, G.M., Chem. Rev. 105, 1103 (2005)CrossRefGoogle Scholar
Chen, R., Kim, H., McIntyre, P.C., Porter, D.W. and Bent, S.F., Appl. Phys. Lett. 86, 191910 (2005)CrossRefGoogle Scholar
Chen, R. and Bent, S.F., Adv. Mater. 18, 1086 (2006)CrossRefGoogle Scholar
Lee, H., Mullings, M.N., Jiang, X., Clemens, B.M., and bent, S.F., Chem. Mater. 24, 4051 (2012)CrossRefGoogle Scholar
Chen, R., Kim, H., and Bent, S.F., Chem. Mater. 17, 536 (2005)CrossRefGoogle Scholar