Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T07:48:05.491Z Has data issue: false hasContentIssue false

Atomic Force Microscopy and Transmission Electron Microscopy Study of Self-Organized Ordering in Vertically Aligned PbSe Quantum Dot Superlattices

Published online by Cambridge University Press:  17 March 2011

A. Raab
Affiliation:
Institut für Halbleiterphysik, Johannes Kepler Universität, A-4040 Linz, Austria
G. Springholz
Affiliation:
Institut für Halbleiterphysik, Johannes Kepler Universität, A-4040 Linz, Austria
R. T. Lechner
Affiliation:
Institut für Halbleiterphysik, Johannes Kepler Universität, A-4040 Linz, Austria
I. Vavra
Affiliation:
Institute of Electrical Engineering, Slovak Academy of Sciences, Bratislava, Slovakia
H. H. Kang
Affiliation:
Department of Materials and Nuclear Engineering, University of Maryland, College Park, USA
L. Salamanca-Riba
Affiliation:
Department of Materials and Nuclear Engineering, University of Maryland, College Park, USA
Get access

Abstract

Self-organized lateral ordering is studied for PbSe/Pb1- x Eux Te quantum dot superlattices as a function of spacer thickness using atomic force microscopy and transmission electron microscopy. It is found that a pronounced hexagonal lateral ordering tendency exist not only for fcc-stacked superlattices but also for those with vertical dot alignment. For the latter case, a best in-plane ordering is observed for Pb1- x Eux Te spacer thicknesses around 160 Å. This is accompanied by a pronounced narrowing of the size distribution to values as low as ±8%. The resulting in-plane dot separations and dot densities are tunable by changes in spacer thickness. Similar marked changes are also found for PbSe dot shape as well as the dot sizes. This provides additional means for the tuning of the optical and electronic properties of the dots.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Xie, Q., Madhukar, A., Chen, P., and Kobayashi, N., Phys. Rev. Lett. 75, 2542 (1995).Google Scholar
2. Tersoff, J., Teichert, C., and Lagally, M.G., Phys. Rev. Lett. 76, 1675 (1996).Google Scholar
3. Solomon, G.S., Terezza, J.A., Marshall, A.F., Harris, J.S., Phys. Rev. Lett. 76, 952 (1996).Google Scholar
4. Sutter, P., Mateeva-Sutter, E., Vescan, L., Appl. Phys. Lett. 78, 1736 (2001).Google Scholar
5. Springholz, G., , Holy, Pinczolits, M., and Bauer, G., Science 282, 734 (1998).Google Scholar
6. Holy, V., Springholz, G., Pinczolits, M., Bauer, G., Phys. Rev. Lett. 83, 356 (1999).Google Scholar
7. Shchukin, V.A., Ledentsov, N., Kop'ev, P., Bimberg, D., Phys. Rev. B 57, 12262 (1998).Google Scholar
8. Springholz, G., Pinczolits, M., Mayer, P., Holy, V., Bauer, G., Kang, H., and Salmanca-Riba, L., Phys. Rev. Lett. 84, 4669 (2000).Google Scholar
9. Pinczolits, M., Springholz, G., and Bauer, G., Phys. Rev. B 60, 11524 (1999).Google Scholar
10. Springholz, G., Schwarzl, T., Heiss, W., Bauer, G., Aigle, M., and Pascher, H., Appl. Phys. Lett. 79, 1225 (2001).Google Scholar