Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T17:22:10.028Z Has data issue: false hasContentIssue false

Asymmetric Membrane Formation in the Heterogeneous Polymerization of Methyl Methacrylate

Published online by Cambridge University Press:  26 February 2011

Antonios G. Mikos
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology, Room E25-342, Cambridge, MA 02139
Costas Kiparissides
Affiliation:
Department of Chemical Engineering, Aristotle University of Thessaloniki, P.O. Box 472, 54006 University City, Thessaloniki, Greece
Get access

Abstract

A mathematical model is presented to describe the fundamental phenomena occurring in the vicinity of the interface between a polymerizing medium and a non-solvent. The model combines the principles of polymerization kinetics, mass transfer and polymer solution thermodynamics and is applied to the polymerization of methyl methacrylate with water. Numerical simulations indicate the development of large interface velocities and the formation of a dense polymer skin at very low monomer conversions in agreement with experimental observations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yilmaz, L. and McHugh, A.J., J. Appl. Polym. Sci. 31, 997 (1986).CrossRefGoogle Scholar
2. Scranton, A.B., Mikos, A.G., Scranton, L.C. and Peppas, N.A., J. Appl. Polym. Sci. 40, 997 (1990).CrossRefGoogle Scholar
3. Castellari, C. and Ottani, S., Chim. Ind. 66, 153 (1984).Google Scholar
4. Cohen, C., Tanny, G.B. and Prager, S., J. Polym. Scd., Polym. Phys. Ed. 17, 477 (1979).Google Scholar
5. McHugh, A.J. and Yilmaz, L., J. Polym. Sci., Polym. Phys. Ed. 23, 1271 (1985).CrossRefGoogle Scholar
6. Neogl, P., AIChE J. 29, 402 (1983).Google Scholar
7. Wijmans, J.G., Altena, F.W. and Smolders, C.A., J. Polym. Scd., Polym. Phys. Ed. 22, 519 (1984).Google Scholar
8. Yilmaz, L. and McHugh, A.J., J. Membrane Sci. 28, 287 (1986).Google Scholar
9. Kiparissides, C., Makromol. Chem., Macromol. Symp. 35/36, 171 (1990).Google Scholar
10. Diamadopoulos, E., Zoubourtikoudis, I. and Kiparissides, C., Colloid Polym. Sci. 268, 306 (1990).CrossRefGoogle Scholar
11. Mikos, A.G. and Kiparissides, C., J. Membrane Sci., submitted.Google Scholar
12. Crank, J., The Mathematics of Diffusion. 2nd ed. (Oxford University Press, London, 1975).Google Scholar
13. Flory, P.J., Principles of Polymer Chemistry (Cornell University Press, Ithaca, 1953).Google Scholar
14. Mikos, A.G., Takoudis, C.G. and Peppas, N.A., J. Appl. Polym. Sci. 31, 2647 (1986).CrossRefGoogle Scholar
15. Chatzi, E.G., Gavrielides, A.D. and Kiparissides, C., Ind. Eng. Chem. Res. 28, 1704 (1989).Google Scholar
16. Barr-Howell, B.D. and Peppas, N.A., Eur. Polym. J. 23, 591 (1987).Google Scholar