Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T01:32:04.828Z Has data issue: false hasContentIssue false

Association Model for Liquid Alloys

Published online by Cambridge University Press:  15 February 2011

Ferdinand Sommer*
Affiliation:
Max-Planck-Institut für Metallforschung, Institut far Werkstoffwissenschaften, Seestraße 75, D-7000 Stuttgart 1, Germany
Get access

Abstract

The concentration and the temperature dependence of thermodynamic mixing functions of liquid alloys with compound formation tendency, which often exhibit large deviations from a regular behavior, can be calculated according to an association model using only a few parameters which have a definite physical significance. The results obtained for binary and ternary alloy melts with one ore more, simultaneously occurring, binary or ternary associates are in good accordance with the experimental values. For the calculation of phase diagrams, the association model enables a correct extrapolation into concentration and temperature regions for which no experimental results are available. The occurrence and the borderline of miscibility gaps in liquid alloys with strong compound forming tendency can be quantitatively described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sommer, F., Z. Metallkde. 73, 72 (1982).Google Scholar
2. Sommer, F., Z. Metallkde. 73, 77 (1982).Google Scholar
3. Sommer, F., Klappert, K.H., Arpshofen, I. and Predel, B., Z. Metallkde. 73, 581 (1982).Google Scholar
4. Sommer, F., Lück, R., Rupf-Bolz, N. and Predel, B., Mat. Res. Bull. (in press).Google Scholar
5. Sommer, F., Lee, J.J. and Predel, B., Z. Metallkde. 71, 818 (1980).Google Scholar
6. Rosa, C.J., Rupf-Bolz, N., Sommer, F. and Predel, B., Z. Metallkde. 71, 320 (1980).Google Scholar
7. Sommer, F., Rupf-Bolz, N. and Predel, B., will be published.Google Scholar
8. Arpshofen, I., Pool, M.J., Sommer, F., Gerling, U., Predel, B. and Schultheis, E., Z. Metallkde. 73 (1982).Google Scholar
9. Pool, M.J., Arpshofen, I., Predel, B. and Schultheiß, E., Z. Metallkde. 70, 656 (1979).Google Scholar
10. Wachtel, E. and Bayer, E., will be published.Google Scholar
11. Toop, G.W., Trans. Met. Soc. AIME 233, 850 (1965).Google Scholar
12. Kohler, F., Monatsh. f. Chemie 91, 738 (1960).Google Scholar
13. Bonnier, E. and Caboz, R., Compt. Rend. Acad. Sci. 250, 527 (1960).Google Scholar
14. Muggianu, Y.M., Gambio, M. and Bross, J.P., J. Chim. Phys. 72, 83 (1975).Google Scholar
15. Pool, M.J., Arpshofen, I., Predel, B. and Schultheiß, E., Z. Metallkde. 70, 726 (1979).Google Scholar
16. Sommer, F., Z. Metallkde. 72, 219 (1981).Google Scholar
17. Moffat, W.G., Handbook of Binary Phase Diagrams (General Electric Comp., Schenectady, New York 1981).Google Scholar
18. Said, H. and Castanet, R., Z. Metallkde. 69, 181 (1978).Google Scholar
19. Predel, B., Piehl, J. and Pool, M.J., Z. Metallkde. 66, 268 (1975).Google Scholar