Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-17T20:13:36.829Z Has data issue: false hasContentIssue false

Assembly of CdSe/CdS Quantum Dots on Au Surfaces for Photoreception

Published online by Cambridge University Press:  01 February 2011

Jing Tang
Affiliation:
Materials Department, University of California, Santa Barbara, CA, 93106, USA.
Henrik Birkedal
Affiliation:
Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA.
Eric W. McFarland
Affiliation:
Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.
Galen D. Stucky
Affiliation:
Materials Department, University of California, Santa Barbara, CA, 93106, USA. Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106, USA.
Get access

Abstract

CdSe/CdS core/shell quantum dots have been synthesized and assembled onto pre-functionalized gold surfaces by either hydrogen bonding or covalent bonds through different functional groups. Control of the conditions during the deposition process allows producing a high coverage of quantum dots via molecular linkages. The quantum-dot surface is highly photoactive and is used in a surface sensitized Schottky barrier photovoltaic structure as the photoreception component. Atomic force microscopy (AFM) and X-ray photoelectron Spectroscopy (XPS) are used to characterize and confirm the morphology and linkage of the assemblies on Au surfaces. The electron transfer from the quantum-dot layer to the Schottky barrier device is examined by measuring the current-voltage (IV) curve of such photovoltaic devices under simulated sun light.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

RefereNCE

1 Chen, J., Reed, M. A., Chem. Phys., 281, 127 (2002);Google Scholar
Banin, U., Millo, O., Annu. Rev. Phys. Chem, 54, 465(2003);Google Scholar
Cahen, D., Hodes, G., Adv. Mater., 14, 789(2002).Google Scholar
2 McFarland, E., Tang, J., Nature, 421, 616 (2003).Google Scholar
3 Tang, J., Birkedal, H., McFarland, E., Stucky, G., Chem. Commun., 18, 2278 (2003).Google Scholar
4 Curri, M. L., Agostiano, A., Leo, G., Mallardi, A., Cosma, P., Monica, M. D., Mater. Sci. Eng., C22, 449 (2002).Google Scholar
5 Marx, E., Ginger, D. S., Walzer, K., Stokbro, K., Greenham, N. C., Nano Lett., 2, 911 (2002);Google Scholar
Boal, A. K., Ilhan, F., DeRouchey, J. E., Thurn-Albrecht, T., Russell, T. P., Rotello, V. M., Nature, 404, 746 (2000);Google Scholar
Chen, C., Yet, C., Wang, H., Chao, C., Langmuir, 15, 6845 (1999).Google Scholar
6 Rogach, A. L., Nagesha, D., Ostrander, J. W., Giersig, M. and Kotov, N. A., Chem. Mater., 12, 2676 (2000).Google Scholar
7 Cha, J. N., Birkedal, H., Euliss, E. L., Bartl, M. H., Wong, M. S., Deming, T. J., Stucky, G. D., J. Am. Chem. Soc., 125, 8285 (2003).Google Scholar
8 Nakanishi, T., Ohtani, B., Shimazu, K. and Uosaki, K., Chem. Phys. Lett., 278, 233 (1997).Google Scholar