Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T01:57:37.835Z Has data issue: false hasContentIssue false

Aspects of Grain Size Strengthening in Polycrystals

Published online by Cambridge University Press:  14 March 2011

Dilip Chandrasekaran
Affiliation:
Dept. of Materials Science and Engineering, Royal Institute of Technology S-100 44 Stockholm, Sweden
Kjell Pettersson
Affiliation:
Dept. of Materials Science and Engineering, Royal Institute of Technology S-100 44 Stockholm, Sweden
Get access

Abstract

The strengthening effect of grain boundaries is well established and observed experimentally as the Hall-Petch relationship. In this paper different mechanisms proposed in the literature to explain the observed Hall-Petch effect are reviewed critically. The fundamental implications of the different approaches are discussed with reference to experimental data for two different classes of materials;

-Materials with locked dislocations, i.e. with a sharp yield point behaviour.

-Materials without locked dislocations, i.e. with a smooth yielding behaviour.

It is shown that a simple model (Bergström) can be used to understand the grain size strengthening in the latter class of materials while more work is needed to quantitatively understand the behaviour of materials showing a sharp yield point.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hall, E.O.. 1970: Macmillan and Co Ltd.Google Scholar
2. Hansen, N., Met.Trans, 1985. 16A., p. 21672190.Google Scholar
3. Li, J.C.M. and Chou, Y.T., Met. Trans, 1970. 1., p. 11451159.Google Scholar
4. Li, J.C.M., TMS-AIME, 1963. 227., p. 239247.Google Scholar
5. Ashby, M.F., Phil. Mag., 1970. 21(399424).Google Scholar
6. Hirth, J.P., Met. Trans, 1972. 3., p. 30473067.Google Scholar
7. Thompson, A.W., Baskes, M.I., and Flanagan, W.F., Acta Met., 1973. 21., p. 10171028.Google Scholar
8. Meyers, M.A. and Ashworth, E., Phil. Mag., 1982. 46(5)., p. 737759.Google Scholar
9. Thompson, A.W. and Baskes, M.I., Phil. Mag., 1973. 28., p. 301308.Google Scholar
10. Thompson, A.W., Acta Met., 1975. 23., p. 13371342.Google Scholar
11. Engberg, G., 1979, Materials Centre, Royal Inst. of Technology, 100 44 StockholmGoogle Scholar
12. Embury, J.D., in Strengthening Methods in Crystals, Kelly, A. and Nicholson, R.B., Editors. 1971, Elsevier. p. 331397.Google Scholar
13. Russel, T.L., Wood, D.S., and Clark, D.S., Acta Met., 1961. 9., p. 10541063.Google Scholar
14. Wilson, D.V., Metal Science, 1967. 1., p. 4047.Google Scholar
15. Jago, R.A. and Hansen, N., Acta Met., 1986. 34(No. 9)., p. 17111720.Google Scholar
16. Bergström, Y. and Hallén, H., Metal Science, 1983. 17(7)., p. 341347.Google Scholar
17. Hansen, N. and Ralph, B., Acta Met., 1981. 30., p. 411417.Google Scholar
18. Bergström, Y., Mat. Sci. Eng, 1970. 5., p. 193200.Google Scholar
19. Roberts, W. and Bergström, Y., Acta Met., 1973. 21., p. 457469.Google Scholar
20. Frost, H.J. and Ashby, M.F., inDeformatiom Mechanism Maps. 1982, Pergamon Press Ltd., Oxford.Google Scholar
21. Norström, L.Å., Metal Science, 1977. 11., p. 208212.Google Scholar
22. Gavriljuk, V.G. et al. , Mat. Sci. Eng, 1999. A 271., p. 1421.Google Scholar