Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T01:43:48.107Z Has data issue: false hasContentIssue false

Aspects of Gas Phase Chemistry During Chemical Vapor Deposition of Ti-Si-N Thin Films With Ti(NMe2)4 (TDMAT), NH3, and SiH4

Published online by Cambridge University Press:  10 February 2011

Carmela Amato-Wierda
Affiliation:
Materials Science Program, University of New Hampshire, Durham, NH 03824, [email protected]
Edward T. Norton Jr
Affiliation:
Materials Science Program, University of New Hampshire, Durham, NH 03824, [email protected]
Derk A. Wierda
Affiliation:
Visiting scientist, Department of Chemistry, Saint Anselm College, Manchester, NH 03102
Get access

Abstract

Silane activation, predominantly in the gas phase, has been observed during the chemical vapor deposition of Ti-Si-N thin films using Ti(NMe2)4, tetrakis(dimethylamido)titanium, silane, and ammonia at 450°C, using molecular beam mass spectrometry. The extent of silane reactivity was dependent upon the relative amounts of Ti(NMe2)4and NH3. Additionally, each TDMAT molecule activates multiple silane molecules. Ti-Si-N thin films were deposited using similar process conditions as the molecular beam experiments, and RBS and XPS were used to determine their atomic composition. The variations of the Ti:Si ratio in the films as a function of Ti(NMe2)4 and NH3 flows were consistent with the changes in silane reactivity under similar conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Smith, P. M. and Custer, J.S., Appl. Phys. Lett. 70, 3116 (1997).Google Scholar
2 Reid, J.S., Amorphous ternary diffusion barriers for silicon metallizations. Ph.D. Thesis, California Institute of Technology, May, 1995.Google Scholar
3 (a) Sun, X., Reid, J.S., Kolawa, E., and Nicolet, M.A., J. Appl. Phys. 81, 656 (1997). (b) X. Sun, J.S. Reid, E. Kolawa, and M.A. Nicolet, J. Appl. Phys. 81, 664 (1997).Google Scholar
4 Raaijmakers, I.J., Thin Solid Films 247, 85 (1994).Google Scholar
5 Sugiyama, K., Pac, P. , Sangryul, Takahashi, Y., and Motojima, S., J. Electrochem. Soc., 122, 1545 (1975).Google Scholar
6 (a) Fix, R.M., Gordon, R.G., and Hoffman, D.M., Chem. Mater. 2, 235 (1990). (b) R.M. Fix, R.G. Gordon, and D.M. Hoffman, Chem. Mater. 3, 1138 (1991). (c) J.M. Musher and R.G. Gordon, J. Mater. Res. 11, 989 (1996). (d) J.M. Musher and R.G. Gordon, J. Electrochem. Soc., 143, 736 (1996). (e) D.M. Hoffman, Polyhedron, 13, 1169 (1994).Google Scholar
7 (a) Katz, A., Feingold, A., Pearton, S.J., Nakahara, S., Ellington, M., Chakrabarti, U.K., Geva, M., and Lane, E., J. Appl. Phys. 70, 3666 (1991). (b) A. Katz, A. Feingold, S. Nakahara, S.J. Pearton, E. Lane, M. Geva, F.A. Stevie, and K. Jones, J. Appl. Phys. 15, 993 (1992).Google Scholar
8 Sun, S.C. and Tsai, M.H., Thin Solid Films, 253, 440 (1994).Google Scholar
9 Paranjpe, A.. and IslamRaja, M., J. Vac. Sci. Technol. B., 13, 2105 (1995).Google Scholar
10 Truong, C.M., Chen, P.J., Corneille, J.S., Oh, W.S., and Goodman, D.W., J. Phys. Chem. 99, 8831 (1995).Google Scholar
11 (a) Dubois, L.H., Zegarski, B.R., and Girolami, G.S., J. Electrochem. Soc. 139, 3603 (1992). (b) J.A. Prybyla, C.-M. Chiang, and L.H. Dubois, J. Electrochem. Soc. 140, 2695 (1993). (c) L.H. Dubois, Polyhedron 13, 1329 (1994).Google Scholar
12 (a) Weiler, B.H., Chem. Mater. 7, 1609 (1995). (b) B.H. Weiler, J. Am. Chem. Soc. 118, 4975 (1996).Google Scholar
13 Pierson, H.O., Handbook of Chemical Vapor Deposition: Principles, Technology and Applications, (Noyes Publications: Park Ridge, New Jersey, 1992).Google Scholar
14 (a) Cundari, T.R., J. Am. Chem. Soc. 114, 10557 (1992). (b) T.R. Cundari and M.S. Gordon, J. Am. Chem. Soc. 115, 4210 (1993). (c) T.R. Cundari, and J.M. Morse, Chem. Mater. 8, 189 (1996).Google Scholar
15 (a) Winter, C.H., Sheridan, P.H., Lewkebandara, T.S., Heeg, M.J., and Proscia, J. W., J. Am. Chem. Soc., 114, 1095 (1992). (b) T.S. Lewkebandara, P.H. Sheridan, M.J. Heeg, A.L. Rheingold, and C.H. Winter, Inorg. Chem. 33, 5879 (1994).Google Scholar
16 Hill, J.E., Profilet, R.D., Fanwick, P.E., Rothwell, I.P., Angew. Chem. Int. Ed. Engl., 29, 664 (1990).Google Scholar
17 Roesky, H.W., Voelker, H., Witt, M., and Noltemeyer, M., Angew. Chem. Int. Ed. Engl., 29, 669 (1990).Google Scholar
18 Cummins, C.C., Schaller, C.P., Van Duyne, G.D., Wolczanski, P.T., Chan, A.W.E., and Hoffman, R., J. Am. Chem. Soc. 113, 2985 (1991).Google Scholar
19 Nugent, W.A., and Haymore, B.L., Coordination Chem. Rev. 31, 123 (1980).Google Scholar
20 Nugent, W.A., and Harlow, R.L., J.C.S. Chem. Comm., 579 (1978).Google Scholar
21 Cummins, C.C., Baxter, S.M., and Wolczanski, P.T. J. Am. Chem. Soc. 110, 8731 (1988).Google Scholar