Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T15:33:19.437Z Has data issue: false hasContentIssue false

A-Si:H Solar Cells Deposited Using VHF–PECVD

Published online by Cambridge University Press:  10 February 2011

W. G. J. H. M. Van Sark
Affiliation:
Department of Atomic and Interface Physics, Debye Institute, Universiteit Utrecht, P.O. Box 80.000, NL-3508 TA Utrecht, the Netherlands
J. Bezemer
Affiliation:
Department of Atomic and Interface Physics, Debye Institute, Universiteit Utrecht, P.O. Box 80.000, NL-3508 TA Utrecht, the Netherlands
R. Van Der Heijden
Affiliation:
Department of Atomic and Interface Physics, Debye Institute, Universiteit Utrecht, P.O. Box 80.000, NL-3508 TA Utrecht, the Netherlands
W. F. Van Der Weg
Affiliation:
Department of Atomic and Interface Physics, Debye Institute, Universiteit Utrecht, P.O. Box 80.000, NL-3508 TA Utrecht, the Netherlands
Get access

Abstract

A-Si:H p+-i-n+ solar cells have been made employing plasma enhanced chemical vapour deposition at frequencies between 30–80 MHz. Here, only the i-layer was fabricated at these very high frequencies (VHF). Both the p+- and n+-layer were made using 13.56 MHz. A previous study has shown the material quality to depend on mainly the applied rf-power, and only slightly on the frequency. It should be noted that for homogeneity reasons a certain optimized pressure is required for each frequency. There is a clear correlation between material quality and solar cell parameters. An initial efficiency of 10 % has been obtained for cells deposited at 65 MHz using a low power density, while the deposition rate still is 2–3 times higher than the one at 13.56 MHz. Light-soaking reveals stabilisation at 6 % for the best cell, which compares well to conventional 13.56 MHz cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Curtins, H., Wyrsch, N., Favre, M., and Shah, A. V., Plasma Chem. Plasma Process. 7, 267 (1987).Google Scholar
2. Heintze, M. and Zedlitz, R., J. Non-Cryst. Solids 164–166, 55 (1993).Google Scholar
3. Shah, A., Dutta, J., Wyrsch, N., Prasad, K., Curtins, H., Finger, F., Howling, A., and Hollenstein, Ch., Mater. Res. Soc. Symp. Proc. 258, 15 (1992).Google Scholar
4. Heintze, M. and Zedlitz, R., Prog. Photovolt.: Res. and Appl. 1, 213 (1993).Google Scholar
5. Sark, W. G. J. H. M. van, Bezemer, J., Heller, E. M. B., Kars, M., and Weg, W. F. van der, Mater. Res. Soc. Symp. Proc. 377, 3 (1995).Google Scholar
6. Meiling, H., van Sark, W. G. J. H. M., Bezemer, J., and van der Weg, W. F., J. Appl. Phys. (submitted).Google Scholar
7. van Sark, W. G. J. H. M., Meiling, H., Bezemer, J., and van der Weg, W. F., Appl. Phys. Lett. (submitted).Google Scholar
8. Stap, C. A. M., Meiling, H., Landweer, G., Bezemer, J., and van der Weg, W. F., in Proceedings of the Ninth E.C. Photovoltaic Solar Energy Conference, Freiburg, F.R.G., 1989, edited by Palz, W., Wrixon, G. T., and Helm, P. (Kluwer Academic, Dordrecht, the Netherlands, 1989), p. 74.Google Scholar
9. Schropp, R. E. I., Meiling, H., van Sark, W. G. J. H. M., Stammeijer, J., Bezemer, J., and van der Weg, W. F., in Proceedings of the Tenth E. C. Photovoltaic Solar Energy Conference, Lisbon, Portugal, 1991, edited by Luque, A., Sala, G., Palz, W., Santos, G. Dos, and Helm, P. (Kluwer Academic, Dordrecht, the Netherlands, 1991), p. 1087.Google Scholar
10. Hamers, E. A. G., van Sark, W. G. J. H. M., Bezemer, J., van der Weg, W. F., and Goedheer, W. J., Mater. Res. Soc. Symp. Proc. 420 (this conference).Google Scholar