Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T15:48:32.822Z Has data issue: false hasContentIssue false

a-Si:H Photo Diode With Variable Spectral Sensitivity

Published online by Cambridge University Press:  10 February 2011

Peter Rieve
Affiliation:
Universität-GH Siegen, Institut für Halbleiterelektronik (IHE), D-57068 Siegen, Germany
Jürgen Giehl
Affiliation:
Universität-GH Siegen, Institut für Halbleiterelektronik (IHE), D-57068 Siegen, Germany
Qi Zhu
Affiliation:
Universität-GH Siegen, Institut für Halbleiterelektronik (IHE), D-57068 Siegen, Germany
Markus Böhm
Affiliation:
Universität-GH Siegen, Institut für Halbleiterelektronik (IHE), D-57068 Siegen, Germany
Get access

Abstract

A novel two terminal thin film photo diode for color detection has been developed. The device structure which is based on standard amorphous silicon nipin multilayers exhibits three or even more linearly independent spectral sensitivity peaks and provides linearity over a wide range of illumination levels. Band gap engineering and electric field tailoring allow a precise voltage controlled shift of the collection region of photo generated carriers. The steady-state as well as the transient device characteristics have been studied in detail. Emphasis was put on optimization of the spectral sensitivity of the color diodes. Furthermore, an electronic color correction algorithm is presented which results in an improved color separation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schulte, J., Fischer, H., Lulé, T., Zhu, Q., Böhm, M., Proceedings of Micro System Technologies 94, VDE-Verlag, Berlin, 783 (1994).Google Scholar
2. Fischer, H., Schulte, J., Rieve, P. and Böhm, M., Mat. Res. Soc. Symp. Proc. 336, 867 (1994).Google Scholar
3. Fang, Y. K., Hwang, S. B., Chen, Y. W. and Kuo, L. C., IEEE Electron Device Lett. 12 (4), 172 (1991).Google Scholar
4. Tsai, H.-K., Lee, S.-C., Appl. Phys. Lett. 52 (4), 275 (1988).Google Scholar
5. Stiebig, H. and Böhm, M., Mat. Res. Soc. Symp. Proc. 297, 963 (1993).Google Scholar
6. Stiebig, H., Böhm, M., J. Non-Cryst. Solids 164–166, 785 (1993).Google Scholar
7. Zhu, Q., Stiebig, H., Rieve, P., Giehl, J., Sommer, M., Böhm, M., Sensors and Control for Advanced Automation, edited by M. Becker, R. W. Daniel, O. Loffeld, Proc. SPIE 2247, 301 (1994).Google Scholar
8. Stiebig, H., Giehl, J., Knipp, D., Rieve, P. and Böhm, M., Mat. Res. Soc. Symp. Proc. 377, 815 (1995).Google Scholar
9. Cesare, G. de, Irrera, F., Lemmi, F. and Palma, F., IEEE Trans. Electron Devices 42 (5), 835 (1995).Google Scholar
10. Eberhard, K., Neidlinger, T. and Schubert, M., IEEE Trans. Electron Devices 42 (10), 1763 (1995).Google Scholar
11. Cesare, G. de, Irrera, F., Lemmi, F. and Palma, F., Appl. Phys. Lett. 66 (10), 1178 (1995).Google Scholar
12. Topic, M., Smole, F., Groznik, A. and Furlan, J., Mat. Res. Soc. Symp. Proc. 377, 779 (1995).Google Scholar
13. Giehl, J., Zhu, Q., Rieve, P. and Bohm, M., this conference.Google Scholar