Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T15:13:22.424Z Has data issue: false hasContentIssue false

Arsenic in SiO2 - Phase Segregation, Drift, and Diffusion Phenomena

Published online by Cambridge University Press:  22 February 2011

G. K. Celler
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
L. E. Trimble
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
T. T. Sheng
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
K. W. West
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
S. G. Kosinski
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
L. Pfeiffer
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

We have recently determined that anomalously low diffusion of high dose As implants in SiO2 is caused by phase separation. In an inert ambient, As segregates into spherical As-rich droplets of 50 to 500Å in diameter, which are essentially immobile when heated isothermally, even at 1405 °C. In a temperature gradient the droplets move toward the heat source.

The dependence of the segregation rate, drift, and diffusion on-the ambient and arsenic concentration is discussed here, and a new interpretation of the published arsenic diffusion data is provided.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Wong, J. and Ghezzo, M., J. Electrochem. Soc. 119, 1413 (1972).CrossRefGoogle Scholar
[2] Wada, Y. and Antoniadis, D. A., J. Electrochem Soc. 128, 1317 (1981).Google Scholar
[3] Singh, R., Maier, M., Krautle, H., Young, D. R., and Balk, P., J. Electrochem. Soc. 131, 2645 (1984).CrossRefGoogle Scholar
[4] van Ommen, A. H., J. Appl. Phys. 56, 2708 (1984). Also A. H. van Ommen, Appl. Surface Science 30, 244 (1987).Google Scholar
[5] Celler, G. K., Trimble, L. E., West, K. W., Pfeiffer, L., and Sheng, T. T., Appl. Phys. Lett. 50, 664 (1987).Google Scholar
[6] Celler, G. K., Trimble, L. E., West, K. W., Pfeiffer, L., and Sheng, T. T., Mater. Res. Soc. Symp. Proc. 92, 53 (1987).Google Scholar
[7] Cline, H. E. and Anthony, T. R., J. Appl. Phys. 48, 2196 (1977), and references therein.CrossRefGoogle Scholar
[8] Celler, G. K., CRC Critical Reviews in Solid State and Materials Sciences, 12, 193 (1985).Google Scholar
[9] Celler, G. K., Hemment, P. L. F., West, K. W., and Gibson, J. M., Appl. Phys. Lett. 48, 532 (1986).Google Scholar
[10] Mazur, R. G. and Dickey, D. H., J. Electrochem Soc. 113, 255 (1966).Google Scholar
[11] L. E. Trimble et al., to be published.Google Scholar
[12] Celler, G. K., Trimble, L. E., Kosinski, S. G., and Sheng, T. T., to be published.Google Scholar
[13] Shewmon, P. G., Trans. Metal. Soc. AIME 230, 1134 (1964).Google Scholar
[14] Tan, T.Y. and Gösele, U., Appl. Phys. Lett. 40, 616 (1982).Google Scholar
[15] Choi, S. C., Numan, M. Z., Chu, W. K., and Irene, E. A., Appl. Phys. Lett. 51, 1001 (1987).Google Scholar
[16] Fathy, D., 0. Holland, W., and White, C. W., Appl. Phys. Lett. 51, 1337 (1987).Google Scholar