Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:04:35.056Z Has data issue: false hasContentIssue false

Arc-Discharge Evaporation of Silver-Plated Graphite Rods

Published online by Cambridge University Press:  01 February 2011

M. Vaziri*
Affiliation:
Department of Computer Science, Engineering Science and Physics University of Michigan-Flint Flint, MI 48502
Get access

Abstract

In this work, several silver-plated graphite rods have been evaporated using the dc-arc discharge technique in the presence of helium quenching gas. The evaporated materials deposited on the cathode and the chamber walls were characterized. It was found that the inner core of the deposited materials contains no encapsulated silver but unusually long bundles of carbon nanotubes. In addition, the soot removed from the walls presents evidence for encapsulated nanocrystalline silver as well as low-mass fullerene cages.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENE

1. Kroto, H.W., Heath, J.R., O'Brien, S.C., Curl, R.F. and Smalley, R.E.. Nature 318 (1985), p. 162.Google Scholar
2. Iijima, S.. Nature 354 (1991), p. 56.Google Scholar
3. Ugarte, D.. Nature 359 (1992), p. 707.Google Scholar
4. Ruoff, R.S., Lorents, D.C., Chan, B., Malhotra, R. and Subramoney, S.. Science 259 (1993), p. 346.Google Scholar
5. Tomita, M., Saito, Y. and Hayashi, T.. Jpn. J. Appl. Phys. 32 (1993), p. L280.Google Scholar
6. Saito, Y., Yoshikawa, T., Okuda, M., Fujimoto, N., Sumiyama, K., Suzuki, K., Kasuya, A. and Nishina, Y.. J. Phys. Chem. Solids 54 (1993), p. 1849.Google Scholar
7. Seraphin, S., Zhou, D. and Jiao, J.. J. Appl. Phys. 80 (1996), p. 2097.Google Scholar
8. Saito, Y., Nishikubo, K., Kawabata, K. and Matsumoto, T.. J. Appl. Phys. 80 (1996), p. 3062.Google Scholar
9. Dresselhaus, M.S., Dresselhaus, G. & Eklund, P.C. Science of Fullerenes and Carbon Nanotubes (Academic Press, 1996).Google Scholar
10. Ajayan, P.M. and Iijima, S.. Nature 361 (1993), p. 333.Google Scholar
11. Murukami, Y., Shibata, T., Okuyama, K., Arai, T., Suematsu, H. and Yoshida, Y.. J. Phys. Chem. Solids 54 (1993), p. 1861.Google Scholar
12. Tsang, S.C., Chen, Y.K., Harris, P.J.F. and Green, M.L.H.. Nature 372 (1994), p. 159.Google Scholar
13. Guerret-Piécourt, C., Le Bouar, Y., Loiseau, A. and Pascard, H.. Nature 372 (1994), p. 761.Google Scholar
14. Chen, Y.K., Chu, A., Cook, J., Green, M.L.H., Harris, P.J.F., Heesom, R., Humphries, M., Sloan, J., Tsang, S.C. and Turner, J.F.C.. J. Mater. Chem. 7, 545 (1997).Google Scholar
15. Krätschmer, W., Lamb, L.D., Fostiropoulos, K. and Huffman, D.R.. Nature 347, 354 (1990).Google Scholar
16. Seraphin, S., in Fullerenes: Recent Advances in Chemistry and Physics of Fullerenes and Related Materials, Kadish, K.M. and Ruoff, R.S., 1433(1994).Google Scholar
17. Ebbesen, T. W., Annu. Rev. Mater. Sci., 24, 235 (1994).Google Scholar
18. Rinzler, A.G., Liu, J., Dai, H., et al. Appl. Phys. A, 67, 29 (1998).Google Scholar
19. Vaziri, M., in preparation.Google Scholar