Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T16:44:26.488Z Has data issue: false hasContentIssue false

Approaches to Solution Deposited Flexible Composite Vapor Barrier Films

Published online by Cambridge University Press:  31 January 2011

Jeffrey A. Gerbec
Affiliation:
[email protected], MC Research and Innovation Center, Goleta, California, United States
Jimmy Granstrom
Affiliation:
[email protected], University of California, Santa Barbara, Materials Research Laboratory, Santa Barbara, California, United States
Hunaid Nulwala
Affiliation:
[email protected], University of California, Santa Barbara, Materials Research Laboratory, Santa Barbara, California, United States
Luis M. Campos
Affiliation:
[email protected], University of California, Santa Barbara, Materials Research Laboratory, Santa Barbara, California, United States
Craig Hawker
Affiliation:
[email protected], University of California, Santa Barbara, Materials Research Laboratory, Santa Barbara, California, United States
Get access

Abstract

Liquid resin hybridized silica sol-gels and thiol-ene elastomers were evaluated as compatible materials to form thin film, flexible multilayered structures. Liquid resins are cast and cured in air and ambient pressure on the order of minutes. Scanning Electron Microscopy (SEM) reveals homogeneous interfaces and robust interfacial adhesion under tensile and compressive stress. Thickness of the hybrid glass and thiol-ene films range from 0.80μm to 1.5μm and 8 μm to 16 μm respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Carcia, P. F., McLean, R. S., Reilly, M. H., Groner, M. D., George, S. M., Appl. Phys. Lett. 89, 031915 (2006).10.1063/1.2221912Google Scholar
2. Lange, J., Wyser, Y., Packag. Technol. Sci. 16, 149158 (2003).10.1002/pts.621Google Scholar
3. Haas, K. H., Adv. Eng. Mater. 2, 571582 (2000).10.1002/1527-2648(200009)2:9<571::AID-ADEM571>3.0.CO;2-M3.0.CO;2-M>Google Scholar
4. Huang, H., Orler, B., Wilkes, G. L., Polym. Bull. 14, 557564 (1985).10.1007/BF00271615Google Scholar
5. Wojcik, A. B., Matthewson, M. J., Castelino, K. T., Wojcik, J., Walewski, A., Proc. of SPIE 6193, 61903T–1 (2006).Google Scholar
6. Graff, G. L., Williford, R. E., Burrows, P. E., J. Appl. Phys. 96, 1840 (2004).10.1063/1.1768610Google Scholar
7. Campos, L. M., Meinel, I., Guino, R. G., Schierhorn, M., Gupta, N., Stucky, G. D., Hawker, C. J., Adv. Mater. 19, 3728 (2008).10.1002/adma.200800330Google Scholar
8. Jackson, W. J. Jr , Caldwell, J. R., J. Appl. Polym. Sci. 11, 211226 (1967)10.1002/app.1967.070110205Google Scholar
9. Vidotti, S. E., Chinellato, A. C., Pessan, L. A., J. Appl. Polym. Sci. 103, 2627 (2007)10.1002/app.25371Google Scholar
10. Robeson, L. M., Polym. Eng. Sci. 9, 277281 (1969)10.1002/pen.760090407Google Scholar
11. Moro, L., Rutherford, N. M., Visser, R. J., Hauch, J. A., Klepek, C., Denk, P., Schilinsky, P., Brabec, C. J., Proc. of SPIE 6334, 63340M (2006)10.1117/12.687185Google Scholar