Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T23:16:47.235Z Has data issue: false hasContentIssue false

Applications of Strained Layer Superlattices

Published online by Cambridge University Press:  16 February 2011

D. L. Smith
Affiliation:
LOS ALAMOS NATIONAL LABORATORY, Los Alamos, NM 87545
B. K. Laurich
Affiliation:
LOS ALAMOS NATIONAL LABORATORY, Los Alamos, NM 87545
C. Mailhiot
Affiliation:
LAWRENCE LIVERMORE NATIONAL LABORATORY, Livermore, CA 94550
Get access

Abstract

Because of different band-edge lineups, strain conditions, and growth orientations, various strained-layer superlattice (SLS) materials can exhibit qualitatively new physical behavior in their optical properties. We describe two examples of new physical behavior in SLS: strain-generated electric fields in polar growth axis superlattices and strained type II superlattices. In SLS, large electric fields can be generated by the piezoelectric effect. The fields are largest for SLS with a [111] growth axis; they vanish for SLS with a [100] growth axis. The strain-generated electric fields strongly modify the optical properties of the superlattice. Photogenerated electron-hole pairs screen the fields leading to a large nonlinear optical response. Application of an external electric field leads to a large linear electrooptical response. The absorption edge can be either red or blue shifted. Optical studies of [100], [111], and [211] oriented GaInAs/GaAs superlattices confirm the existence of the strain-generated electric fields. Small band-gap semiconductors are useful for making intrinsic long wavelength infrared detectors. Arbitrarily small band gaps can be reached in the type II superlattice InAs/GaSb. However, for band gaps less than 0.1 eV, the layer thicknesses are large and the overlap of electron and hole wavefunctions are small. Thus, the absorption coefficient is too small for useful infrared (IR) detection. Including In in the GaSb introduces strain in the InAs/GaInSb superlattice, which shifts the band edges so that small band gaps can be reached in thin-layer superlattices. Good absorption at long IR wavelengths is thus achieved.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Matthews, J. W. and Blakeslee, A. E., J. Cryst. Growth 27, 118 (1974); 29, 273 (1975); 32. 265 (1976).Google Scholar
2. Osbourn, G. C., Biefeld, R. M., and Gourley, P. L., Appl. Phys. Lett. 42, 172 (1982).10.1063/1.93450Google Scholar
3. 1. Fritz, J., Dawson, L. R., and Zipperian, T. E., Appl. Phys. Lett. 43, 846 (1983).10.1063/1.94523Google Scholar
4. Osbourn, G. C., J. Appl. Phys. 53, 1586 (1982).10.1063/1.330615Google Scholar
5. Smith, D. L., Solid State Commun. 57, 919 (1986).10.1016/0038-1098(86)90924-5Google Scholar
6. Mailhiot, C. and Smith, D. L., Phys. Rev. B35, 1242 (1987).10.1103/PhysRevB.35.1242Google Scholar
7. Smith, D. L. and Mailhiot, C., Phys. Rev. Lett. 58, 1264 (1987).10.1103/PhysRevLett.58.1264Google Scholar
8. Mailhiot, C. and Smith, D. L., Phys. Rev. B37, 10415 (1988).10.1103/PhysRevB.37.10415Google Scholar
9. Smith, D. L. and Mailhiot, C., J. Appl. Phys. 62, 2545 (1987).10.1063/1.339468Google Scholar
10. Mailhiot, C. and Smith, D. L., J. Vac. Sci. Technol. A7, 445(1989).10.1116/1.576201Google Scholar
11. Smith, D. L. and Mailhiot, C., J. Appl. Phys. 63, 2717 (1988).10.1063/1.340965Google Scholar
12. Hayakawa, T., Takahashi, K., Kondo, M., Suyoma, T., Yamamoto, S., and Hijikata, T., Phys. Rev. Lett. 60, 349 (1988).10.1103/PhysRevLett.60.349Google Scholar
13. Elcess, K., Lievin, J. L., and Fonstad, C. G., J. Vac. Sci. Technol. B6, 638 (1988).10.1116/1.584376Google Scholar
14. Laurich, B. K., Elcess, K., Fonstad, C. G., Beery, J. G., Mailhiot, C., and Smith, D. L., Phys. Rev. Lett. 62, 649 (1989).10.1103/PhysRevLett.62.649Google Scholar
15. Beery, J. G., Laurich, B. K., Maggiore, C. J., Smith, D. L., Elcess, K., Fonstad, C. G., and Mailhiot, C., Appl. Phys. Lett. 54, 233 (1989).10.1063/1.101016Google Scholar
16. Laurich, B. K., Smith, D. L., Elcess, K., Fonstad, C. G., and Mailhiot, C., Superlatt. and Microstruc. 5, 341 (1989).10.1016/0749-6036(89)90312-1Google Scholar
17. Smith, D. L., McGill, T. C., and Schulman, J. N., Appl. Phys. Lett. 43, 180 (1983).10.1063/1.94272Google Scholar
18. Arch, D. K., Wicks, G., Tonaue, T., and Staudenmann, J. L., J. Appl. Phys. 58, 3933 (1985).10.1063/1.335566Google Scholar
19. Sai-Halasz, G. A., Chang, L. L., Walter, J. M., Chang, C. A., and Esaki, L., Solid State Commun. 27, 935 (1978).10.1016/0038-1098(78)91010-4Google Scholar
20. Gobeli, G. W. and Allen, F. G., Phys. Rev. 137, A245 (1965).10.1103/PhysRev.137.A245Google Scholar
21. Mead, C. A., Solid State Electron. 9, 1023 (1966).10.1016/0038-1101(66)90126-2Google Scholar
22. Walle, C. G. Van de, Phys. Rev. B39, 1871 (1989).10.1103/PhysRevB.39.1871Google Scholar