Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T18:35:42.912Z Has data issue: false hasContentIssue false

Application to Lithium Batteries of Ternary Solvent Electrolytes with Ethylene Carbonate – 1,2-Dimethoxyethane Mixture

Published online by Cambridge University Press:  10 February 2011

Y. Sasaki
Affiliation:
Department of Industrial Chemistry, Faculty of Engineering, Tokyo Institute of Polytechnics, Atsugi, Kanagawa 243–0297Japan, [email protected]
N. Yamazaki
Affiliation:
Department of Industrial Chemistry, Faculty of Engineering, Tokyo Institute of Polytechnics, Atsugi, Kanagawa 243–0297Japan, [email protected]
M. Handa
Affiliation:
Department of Industrial Chemistry, Faculty of Engineering, Tokyo Institute of Polytechnics, Atsugi, Kanagawa 243–0297Japan, [email protected]
Get access

Abstract

The electrolytic conductivity, the lithium cycling efficiency of lithium electrode and the energy density for Li/V2O5(2025) coin-type cell were examined in ternary solvent electrolytes containing LiPF6 and LiClO4 with ethylene carbonate(EC) – 1,2-dimethoxyethane(DME) equimolar binary mixture at 25°C. The solvents applied to EC – DME mixture are dimethyl carbonate(DMC), ethyl methyl carbonate(EMC), diethyl carbonate(DEC), 1,3-dioxolane(DOL), 2,2-bis(trifluoromethyl)-1,3-dioxolane(TFMDOL), 1,3-dimethy1–2-imidazolidinone(DMI) and 1-methyl-2-pyrrolidinone(NMP). The order of decrease of the molar conductivities in ternary solvents electrolytes except DMI and NMP systems is agreement with that of increase in viscosities of the solvents applied to EC – DME binary mixture. The molar conductivities in ternary solvent electrolytes containing DMI and NMP are mainly affected by the dielectric constants rather than viscosities of mixed solvents. The energy density of Li/V2O5(2025) coin-type cell in LiPF6/EC – DME – DOL electrolyte with the highest molar conductivity was 500 Wh kg−1, which is the highest value in every ternary electrolyte. The lithium cycling efficiency(charge - discharge coulombic cycling efficiency of lithium electrode) in EC – DME – EMC, EC – DME – DMI and EC – DME – TFMDOL electrolytes containing LiPF6 is more than 75% at 40 cycle numbers. The lithium electrodeposition on the Ni(working) electrode surface in ternary solvent electrolytes by cyclic voltammetry was observed by atomic force microscopy(AFM) and scanning electron microscope(SEM).

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Goures, H. -J. and Barthel, J., J. Solution Chem., 9, 939 (1980).Google Scholar
2. Tobishima, S. and Yamaji, A., Electrochim. Acta, 28, 1067 (1983).10.1016/0013-4686(83)80010-3Google Scholar
3. Tobishima, S., Yamaki, J. and Okada, T., Electrochim. Acta, 29, 1471 (1984).10.1016/0013-4686(84)87030-9Google Scholar
4. Tobishima, S. and Okada, T., Electrochim. Acta, 30, 1715 (1985).10.1016/0013-4686(85)87019-5Google Scholar
5. Matsuda, Y., Monta, M., and Tachihara, F., Bull. Chem. Soc. Jpn., 59, 1967 (1986).10.1246/bcsj.59.1967Google Scholar
6. Matsuda, Y., J. Power Sources, 20, 19 (1987).10.1016/0378-7753(87)80086-1Google Scholar
7. Tobishima, S., Arakawa, M., Hirai, T., and Yamaki, J., J. Power Sources, 20, 293 (1987).Google Scholar
8. Ohzuku, T., Kitagawa, M., and Hirai, T., J. Electrochem. Soc., 136, 3169 (1989).10.1149/1.2096421Google Scholar
9. Matsuda, Y., Nippon Kagaku Kaishi, 1989, 1.10.1246/nikkashi.1989.1Google Scholar
10. Subbaro, S., Shen, D. H., Deligiannis, F., Huang, C. -K., and Halpert, G., J. Power Sources, 29, 579 (1990).10.1016/0378-7753(90)85027-AGoogle Scholar
11. Sasaki, Y., Goto, S., and Handa, M., Denki Kagaku, 61, 1419 (1993).Google Scholar
12. Sasaki, Y., Hosoya, M., and Handa, M., J. Power Sources, (1997) in press.Google Scholar
13. Yamazaki, N., Handa, M., and Sasaki, Y., Denki Kagaku, 65, 834 (1997).Google Scholar
14. Fringant, C. and Tranchant, A., Messina, R., Electrochim. Acta, 40, 513 (1995).Google Scholar
15. Tobishima, S., Hayashi, K., Saito, K., and Yamaki, J., Electrochim. Acta, 40, 537 (1995).Google Scholar
16. Riddick, J. A., Bunger, W. B., and Sakano, T. K., Organic Solvents, 4th ed. (John Wiley and Sons, Inc., New York, 1986.Google Scholar
17. Sasaki, Y., Miyagawa, K., Wataru, N., and Kaido, H., Bull. Chem. Soc. Jpn., 66, 1608 (1993).10.1246/bcsj.66.1608Google Scholar
18. Sasaki, Y., Koshiba, T., Taniguchi, H., and Takeya, Y., Nippon Kagaku Kaishi, 1992, 140.Google Scholar
19. Koch, V. R. and Brummer, S. B., Electrochim. Acta, 23, 55 (1978).Google Scholar
20. Salomon, M., Slane, S., Plichta, E., and Uchiyama, M., J. Solution Chem., 19, 977 (1989).10.1007/BF00647897Google Scholar
21. Aurbach, D., Daroux, M. L., Faguy, P.W., and Yeager, E.B., J. Electrochem. Soc., 135, 1863 (1988).10.1149/1.2096170Google Scholar
22. Aurbach, D., Ein-Eli, Y., and Zaban, A., J. Electrochem. Soc., 141, L1 (1994).10.1149/1.2054718Google Scholar
23. Kanamura, K., Tamura, H., Shiraishi, S., and Takehara, Z.. J. Electroanal. Chem., 142, 340 (1995).10.1149/1.2044000Google Scholar
24. Kanamura, K., Tamura, H., Shiraishi, S., and Takehara, Z., J. Electroanal. Chem., 394, 49 (1995).Google Scholar
25. Koch, V. R., J. Power Sources, 6, 357 (1981).Google Scholar
26. Garreau, M., J. Power Sources, 20, 9 (1987).Google Scholar