Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T00:32:42.239Z Has data issue: false hasContentIssue false

The Application of the X-Ray Surface Forces Apparatus (XSFA) to Studies of Confined Complex Fluid Systems

Published online by Cambridge University Press:  15 February 2011

I. Koltover
Affiliation:
Materials and Physics Departments, University of California at Santa Barbara, Santa Barbara, CA 93106
S. H. J. Idziak
Affiliation:
Materials and Physics Departments, University of California at Santa Barbara, Santa Barbara, CA 93106
C. R. Safinya
Affiliation:
Materials and Physics Departments, University of California at Santa Barbara, Santa Barbara, CA 93106
S. Steinberg
Affiliation:
Chemical Engineering and Materials Departments, University of California at Santa Barbara, Santa Barbara, CA 93106
J. N. Israelachvili
Affiliation:
Chemical Engineering and Materials Departments, University of California at Santa Barbara, Santa Barbara, CA 93106
K. S. Liang
Affiliation:
Exxon Research and Engineering Co., Annandale, NJ 08801
Get access

Abstract

We report here on the application of the new technique of the X-Ray Surface Forces Apparatus (XSFA) to the study of the smectic liquid crystal 8CB (4-cyano-4′-octylbiphenyl) and a zwitterionic polyisoprene melt. The XSFA allows one to study the structure of fluid films under confinement and flow using intense synchrotron x-ray radiation. The above systems were investigated with the distances between the confining surfaces ranging from 0.4μm to a few tens of microns. Two different kinds of confining surfaces were used leading to different structural behavior of the samples as a function of the confining gap.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Idziak, S. H. J., Safinya, C. R., Hill, R. S., Kraiser, K. E., Ruths, M., Warriner, H. E., Steinberg, S., Liang, K. S. and Israelachvili, J. N., Science 264,1915 (1994).Google Scholar
2. Idziak, S. H. J., Safinya, C. R., Sirota, E. B., Bruinsma, R. F., Liang, K. S. and Israelachvili, J. N., in Structure and Flow in Surfactant Solutions, edited by Herb, C. A. and Prud'homme, R. K. (American Chemical Society, Washington, DC, 1994).Google Scholar
3. Idziak, S. H. J., Koltover, I., Liang, K. S., Israelachvili, J. N. and Safinya, C. R., International Journal of Thermophysics, (in press).Google Scholar
4. Safinya, C. R., Sirota, E. B., Plano, R., Bruinsma, R. F., J. Phys. Condens. Matter 2,SA365 (1990); C. R. Safinya, E. B. Sirota, R. Plano, Phys. Rev. Lett. 66, 1986 (1991).Google Scholar
5. Isrealachvili, J. N., “Intermolecular and Surface Forces,” Academic Press, London & New York, 1985 (1st edition), 1991 (2nd edition).Google Scholar
6. Van Alsten, J. and Granick, S., Phys. Rev. Lett. 61, 2570 (1988).Google Scholar
7. Klein, J., Perahia, D., Warburg, S., Nature 352, 143 (1991); J. N. Israelachvili, A. M. Homola, P. M. McGuiggan, Science 240, 189 (1988).Google Scholar
8. Als-Nielsen, J., Topics in Current Physics, Schommers, W. and Blackenhagen, P. V., Eds. (p. 181, Springer-Verlag, Verlin 1987); P. S. Pershan, J. Physique Coll. 50, C7 1 (1989); B. Jerome, Rep. Prog. Phys. 54, 391 (1991) and references therein.Google Scholar
9. See Drake, e.g. J. M. and Klafter, J., Physics Today 43 (5), 46 (1990) and references therein; J. M. Drake, J. Klafter, P. Levitz, Science 251, 1574 (1991).Google Scholar
10. Bellini, T. et al., Phys. Rev. Lett. 69, 788 (1992).Google Scholar
11. Schoen, M., Diestler, D. J., and Cushman, J. H., J. Chem. Phys. 87, 5464 (1987); C. L. Rhykerd Jr., M. Schoen, D. J. Diester, and J. H. Cushman, Nature 330, 461 (1987); P. A. Thompson, M. O. Robbins, G. S. Grest, Phys. Rev. Lett. 68, 3448 (1992).Google Scholar
12. Weissenberg, K., Nature 159, 310 (1947); R. F. Bruinsma and C. R. Safinya, Phys. Rev. A 43, 5377 (1991).Google Scholar
13. Clark, N. A., and Ackerson, B. J., Phys. Rev. Lett. 44, 1005 (1980).Google Scholar
14. Safinya, C. R., Sirota, E. B., Plano, R., Bruinsma, R. F., Jeppesen, C., Plano, R. J., and Wenzel, L. J., Science 261, 588 (1993).Google Scholar
15. Lin, M.Y., Sinha, S.K., Drake, J.M., Wu, X.-I., Thiyagarajan, P., and Stanley, H.B., Phys. Rev. Lett. 72: 2207 (1994).Google Scholar
16. Israelachvili, J. N. and McGuiggan, P. M., J. Mater. Res. 5, 2223 (1990).Google Scholar
17. Pieranski, P. and Jerome, B., Phys. Rev. A 40,317 (1989).Google Scholar
18. Shen, Y., Safinya, C. R., Fetters, L., Adam, M., Witten, T. and Hadjichristidis, N., Phys. Rev. A 43(4), 1886 (1991).Google Scholar
19. Koppi, K. A., Tirrell, M., Bates, F. S., Almdal, K., and Colby, R. H., J. Phys. 2, 1941 (1992); K. A. Koppi, M. Tirrell, F. S. Bates, Phys. Rev. Lett. 70, 1449 (1993).Google Scholar