Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-10-05T23:03:54.421Z Has data issue: false hasContentIssue false

Application of Spatially Resolved Eels on Atomic Structure Determination of Diamond Grain Boundary

Published online by Cambridge University Press:  10 February 2011

H. Ichinose
Affiliation:
Department of Materials Science, University of Tokyo, Tokyo, Japan
Y. Zhang
Affiliation:
Department of Materials Science, University of Tokyo, Tokyo, Japan
Y. Ishida
Affiliation:
Department of Materials Science, University of Tokyo, Tokyo, Japan
K. Ito
Affiliation:
Department of Materials Science, University of Tokyo, Tokyo, Japan
M. Nakanose
Affiliation:
Aerospace Division, Nissan Motor Inc., Tokyo, Japan
Get access

Abstract

A new spatially resolved electron energy-loss spectrometry (EELS) method was introduced to obtain atomic structure information of grain boundaries in diamond thin films grown by chemical vapor deposition. The electron energy-loss spectra recorded from the grain boundary regions showed different feature near the energy loss corresponding to carbon ls-to-π* transition, as compared to the spectra recorded from neighboring crystalline regions. This difference was attributed to dangling bonds in atoms with planar three-fold coordination. A series of experiments are described in this paper that exclude any possible artifact in result interpretation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Berger, S.D. and Pennycook, S. J., Nature 298, 635 (1982).Google Scholar
2. Bruley, J. and Batson, P. E., Phys. Rev. B40, 9888 (1989).Google Scholar
3. Zhang, Y., Ichinose, H., Ishida, Y., Ito, K., and Nakanose, M., in Diamond for Electronic Applications-MRS Symp. Proc. Vol. 416, 355 (1996).Google Scholar
4. Müllejans, M. and Bruley, J., Ultramicros. 53, 351 (1994).Google Scholar
5. Bruley, J., Microsc. Microanal. Microstruct. 4, 23 (1993).Google Scholar
6. Bruley, J., Brydson, R., Müllejans, H., Mayer, J., Gutekunst, G., Mader, W., Knauss, D., and Rühle, M., J. Mater. Res. 9, 2574 (1994).Google Scholar
7. Brydson, R., Bruley, J., Müllejans, H., Scheu, C., and Rühle, M., Ultramicros. 59, 81 (1995).Google Scholar
8. MüUejans, M. and Bruley, J., J. Microscopy 180, 12 (1995).Google Scholar
9. Gu, H., Ceh, M., Stemmer, S., Müllejans, H., and Rühle, M., Ultramicros. 59, 215 (1995).Google Scholar
10. Berger, S. D., McKenzie, D. R., and Martin, P. J., Phil. Mag. Lett. 57, 285 (1988).Google Scholar
11. Zhang, Y., Ichinose, H., Nakanose, M., Ito, K., and Ishida, Y., “Atomic Structure of 〈110〉 Til1 Coincident Boundaries in CVD Diamond Thin Films”, to be submitted.Google Scholar
12. Collins, A., Kamo, M. and Sato, Y., J. Mater. Res. 5, 2507 (1990).Google Scholar
13. Bruley, J., Phil. Mag. Lett. 66, 47 (1992).Google Scholar
14. Sapoval, B., Hermann, C., Physics of Semiconductors, Springer-Verlag, New York, 1995, see p. 88.Google Scholar
15. Mönch, W., Semiconductor Surfaces and Interfaces (second edition), Springer-Verlag Berlin, 1995, see p. 247.Google Scholar
16. Wang, Y., Chen, H., Hoffman, R. W., Angus, J. C, J. Mater. Res. 5, 2378 (1990).Google Scholar
17. Hamza, A. V., Kubiak, G. D., and Stulen, R. H., Surf. Sci. 206, L833 (1988).Google Scholar