Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:05:40.367Z Has data issue: false hasContentIssue false

Application of Mxcd to Magnetic Thin-Film Sensors

Published online by Cambridge University Press:  15 February 2011

P. J. Bedrossian
Affiliation:
Lawrence Livermore National Laboratory, Livermore CA 94550
J. G. Tobin
Affiliation:
Lawrence Livermore National Laboratory, Livermore CA 94550
A. F. Jankowski
Affiliation:
Lawrence Livermore National Laboratory, Livermore CA 94550
G. D. Waddill
Affiliation:
University of Missouri-Rolla, Rolla MO 65401
T. C. Anthony
Affiliation:
Hewlett-Packard Laboratories, Palo Alto CA 94305
J. A. Brug
Affiliation:
Hewlett-Packard Laboratories, Palo Alto CA 94305
Get access

Abstract

While Magnetic X-ray Circular Dichroism (MXCD) has been applied extensively to the extraction of elemental magnetic moments in various magnetic multilayers, the configuration of actual devices imposes certain constraints on the application of MXCD to devices. Using a set of real, thin-film spin valve devices with varying Cu spacer layer thicknesses, we demonstrate the correlation between MXCD and magnetoresistance measurements on those devices as well as the restrictions on the interpretation of MXCD data imposed by both the device topology and the formulation of realistic error estimates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Stöhr, J. and Wu, Y.. in New Directions in research with 3rd Generation Soft X-ray Synchrotron Radiation Sources (eds. Schlacter, A. & Wuillemier, F.) (Kluwer Academic, Dordrecht; Boston, 1994).Google Scholar
2. Jankowski, A., Waddill, G. and Tobin, J.. J. Vac. Sci. Technol. A 12, 22152218 (1994); also J. Tobin, G. D. Waddill, A. Jankowski, P. Sterne, and D. Pappas, Phys. Rev. B 52, 6530–6541 (1995).Google Scholar
3. Wu, Y., etal. Phys. Rev. Lett. 69, 23072310 (1992).Google Scholar
4. Waddill, G., Tobin, J. and Jankowski, A.. J. Appl. Phys. 74, 69997001 (1993).Google Scholar
5. Anthony, T., Brug, J. and Zhang, S.. IEEE Trans. Mag. 30, 3819 (1994).Google Scholar
6. Carey, M. and Berkowitz, A.. App. Phys. Lett. 60, 30603062 (1992).Google Scholar
7. Tobin, J., Waddill, G. and Pappas, D.. Phys. Rev. Lett. 68, 36423645 (1992).Google Scholar
8. Erskine, J. and Stem, E.. Phys. Rev. B 12, 50165024 (1975).Google Scholar
9. Smith, N., Chen, C., Sette, F. and Mattheiss, L.. Phys. Rev. B 46, 10231032 (1992).Google Scholar
10. Thole, B., Carra, P., Sette, F. and Laan, G.v.d.. Phys. Rev. Lett. 68, 19431946 (1992).Google Scholar
11. Carra, P., Thole, B., Altarelli, M. and Wang, X.. Phys. Rev. Lett. 70, 694697 (1993).Google Scholar
12. Grande, N.K.d.. Physica Scripta 41, 110114 (1990).Google Scholar
13. Leapman, R., Grunes, L. and Fejes, P.. Phys. Rev. B 26, 614635 (1982).Google Scholar
14. Chen, C.. Magnetism and Metallury of Soft Magnetic Materials (Dover, New York, 1976).Google Scholar