Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-03T02:31:05.226Z Has data issue: false hasContentIssue false

Application of Holographic Interferometry to Flow Pattern Visualization in an RTCVD Reactor

Published online by Cambridge University Press:  10 February 2011

Yu. P. Rainova
Affiliation:
Department of Physical Chemistry Fundamentals of Microelectronic Technology. Moscow State Institute of Electronic Engineering, 103498 Moscow, Russian Federation
J. Pezoldt
Affiliation:
Institut für Festkörperelektronik, TU Ilmenau, Postfach 0565, D-98684 Ilmenau, Germany, [email protected]
K. I. Antonenko
Affiliation:
Department of Physical Chemistry Fundamentals of Microelectronic Technology. Moscow State Institute of Electronic Engineering, 103498 Moscow, Russian Federation
G. Eichhom
Affiliation:
Institut für Festkörperelektronik, TU Ilmenau, Postfach 0565, D-98684 Ilmenau, Germany, [email protected]
Get access

Abstract

This paper presents the development of an experimental technique for the reception of holographic interferograms of H2 and Ar flows in a RTCVD reactor with a complex geometry. The obtained holographic patterns were analyzed for the reconstruction of the gas flow in the RTCVD reactor. The fringe patterns showing the gas density distributions were recalculated into temperature distributions. Experimental results were compared with the predicted flow field.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nagabushnam, V., Singh, R.K., Mater. Res. Soc. Symp. Proc. 342 383 (1994).Google Scholar
2. Lord, H.A., IEEE Trans. Semicond. Manufact. 1 105 (1988).Google Scholar
3. Henda, R., Scheid, E., Bielle-Daspet, D., Mater. Res. Symp. Proc. 342 419 (1994).Google Scholar
4. Pietzuch, V., Zöllner, J.-P., Pezoldt, J., Proc. 7th Czecho-Slovak Conference on Thin Films (7CSCTF), 14.-18. June 1993, Sliptovsky Mikulas, Slovakia, 2 179 (1993).Google Scholar
5. Campell, S.A., Ahn, K.-H., Knutson, K.L., Liu, B.Y.H., Leighton, J.D., IEEE Trans. Semicond. Manufact. 4 14 (1991).Google Scholar
6. Knutson, K.L., Campell, S.A., Dunn, F., Mater. Res. Soc. Symp. Proc. 303 211 (1992).Google Scholar
7. Kersch, A., Schäfer, H., Werner, C., Proc. IEDM 833 (1991).Google Scholar
8. Lie, Kun-Ho, Merchant, T.P., Jensen, K.F., Mater. Res. Soc. Symp. Proc. 303 197 (1992).Google Scholar
9. Chatterjee, S., Trachtenberg, I., Edgar, T.F., J. Electrochem. Soc. 139 3682 (1992).Google Scholar
10. Holstein, W.L., Progr. Crystal. Growth and Charact. 24 111 (1992).Google Scholar
11. Gilling, L.J., J. Electrochem. Soc. 129 634 (1982).Google Scholar
12. Gilling, L.J.. J de Physique, Colloq. C5, 43 C5235 (1982).Google Scholar
13. Benet, S., Berge, R., Brunet, S., Charar, S., Armas, B., et Combescure, C., Rev. Int. hautes Temper. Refract., Fr., 19 77 (1982).Google Scholar
14. Williams, I.E., Petterson, R.W., J. Cryst. Growth 77 128 (1986).Google Scholar
15. Rainova, Yu.P., Turulin, S.M., Sorokin, I.N., Antonenko, K.I., Inorg. Mater. 31 151 (1995).Google Scholar
16. Leitz, G., Pezoldt, J., Patzschke, I., Zöllner, J.-P., Eichhorn, G., Mater. Res. Soc. Symp. Proc. 303 171 (1993).Google Scholar
17. Vest, C., Holographic interferometry, Wiley & Sons, New York, 1979, pp. 166, pp 314–21.Google Scholar