Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:40:49.207Z Has data issue: false hasContentIssue false

Application of Desorption Mass Spectrometry to Molecular Beam Epitaxy

Published online by Cambridge University Press:  22 February 2011

Keith R. Evans*
Affiliation:
WL/ELRA, Solid State Electronics Directorate, Wright Laboratory, WPAFB, OH
Get access

Abstract

Molecular beam epitaxy (MBE) is the most powerful crystal growth technique available in terms of the range of structures which can be produced. However, further advances in MBEprocess monitoring and control are required to produce the most demanding structures. Also, process yield, cost, and throughput must be improved for MBE to gain in production worthiness. Because of these issues, there currently is much research activity focusing on the development of advanced in-situ sensors for improved growth parameter monitoring and control. Desorption mass spectrometry (DMS) is an in-situ sensor technique for detecting species leaving the substrate during MBE growth processing. Since in general all surface processes affect desorption rates, and all growth parameters affect surface processes, DMS can be utilized to monitor a variety of MBE growth parameters and phenomena. Theimplementation of simple feedback techniques which link DMS error signals to changes in one or more growth parameters then provides for continuous control of desorption rates. This paper reviews some of the most recent accomplishments in the application of DMS forimproved growth parameter monitoring and control. Additionally, anticipated future directions in the application of DMS to epitaxial growth are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Brennan, T. M., Tsao, J. Y., Hammons, B. E., Klein, J. F., and Jones, E. D., J. Vac. Sci. Technol. B 7, 277 (1989).Google Scholar
2. Zagatta, G., Muller, H., Biwering, N., and Heinzmann, U., Rev. Sci. Instrum. 65, 359 (1994).Google Scholar
3. Kaspi, R., Cooley, W. T., Jones, C. R., and Evans, K. R., to be published.Google Scholar
4. Foxon, C. T., Harvey, J. A., and Joyce, B. A., J. Phys. Chem Solids 34, 1693 (1973).Google Scholar
5. Evans, K. R., Stutz, C., Taylor, E. N., and Ehret, J. E., J. Vac. Sci. Technol. B 9, 2427 (1991).Google Scholar
6. Evans, K. R., Stutz, C. E., Yu, P. W., and Wie, C. R., J. Vac. Sci. Technol. B 8, 271 (1990).Google Scholar
7. Evans, K. R., Stutz, C., Lorance, D. K., and Jones, R. L., J. Vac. Sci. Technol. B 7, 259 (1989).Google Scholar
8.See, for example, Chalmers, S. A. and Killeen, K. P., Appl. Phys. Lett. 63, 3131 (1993).Google Scholar
9. Tsao, J. Y., Brennan, T. M., Klein, J. F., and Hammons, B. E., Appl. Phys. Lett. 55, 777 (1989).Google Scholar
10. Kaspi, R., private communication.Google Scholar
11. Evans, K. R., Stutz, C. E., Taylor, E. N., and Ehret, J. E., Appl. Surf. Sci. 56, 677 (1992).Google Scholar
12. SpringThorpe, A. J. and Mandeville, P., J. Vac. Sci. Technol. B 6, 754 (1988).Google Scholar
13.See, for example, , Moison et al., J. Crystal Growth 111, 141 (1991), and references therein.Google Scholar
14. Kao, Y. C., Cellii, F. G., and Liu, H. Y., J. Vac. Sci. Technol. B 11, 1023 (1993)Google Scholar
15. SpringThorpe, A. J. and Arent, D. J., J. Vac. Sci. B 11, 783 (1993).Google Scholar
16. Evans, K. R., Ehret, J. E., Jones, C. R., Kaspi, R., and Taylor, E. N., to be published.Google Scholar
17. Evans, K. R., Kaspi, R., Jones, C. R., Sherriff, R. E., Jogai, V., and Reynolds, D. C., J. Cryst. Growth 127, 523 (1993).Google Scholar