Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-17T14:51:06.140Z Has data issue: false hasContentIssue false

Application of Ab Initio Methods to Secondary Lithium Batteries

Published online by Cambridge University Press:  10 February 2011

M K. Aydinol
Affiliation:
Massachusetts Institute of Technology, Department of Materials Science and Engineering, Cambridge, MA 02139
A. Van Der Ven
Affiliation:
Massachusetts Institute of Technology, Department of Materials Science and Engineering, Cambridge, MA 02139
G. Ceder
Affiliation:
Massachusetts Institute of Technology, Department of Materials Science and Engineering, Cambridge, MA 02139
Get access

Abstract

Ab initio methods have started to be widely used in materials science for the prediction of properties of metals, alloys and compounds. These methods basically require only the atomic numbers of the constituent species. Such methods not only provide us with predictions of some of the properties of the material (even before synthesizing it) but also help us in understanding the phenomena that control those properties.

The use of ab initio methods in the field of electrochemistry is, however, quite recent and rare [1–4]. In this study, we demonstrate how ab initio methods can be used to investigate the properties of secondary lithium batteries. Particular examples will be given in predicting average insertion voltages in spinel Li-Mn and Li-Co oxides and in layered LiMO2 (M = Ti, V, Mn, Fe, Co and Al) compounds. Additionally, the stability of these compounds to metal reduction and structural stability of LiCoO2 upon lithium removal is investigated. We find that the oxygen anion plays an active role in the electrochemical intercalation of lithium. The amount of electron transfer to oxygen occurring upon lithium intercalation correlates strongly with the cell voltages. The more electron transfer to oxygen occurs, the higher lithium intercalation potential is obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Reimers, J. N. and Dahn, J. R., Phys. Rev. B 47, 2995 (1993).Google Scholar
2. Miura, K., Yamada, A. and Tanaka, M., Electrochim. Acta 41, 249 (1996).10.1016/0013-4686(95)00304-WGoogle Scholar
3. Aydinol, M. K., Kohan, A. F., Ceder, G., Cho, K. and Joannopoulos, J., Phys. Rev. B 56, 1354 (1997).Google Scholar
4. Ceder, G., Aydinol, M. K. and Kohan, A. F., Comput. Mat. Sci. 8, 161 (1997).10.1016/S0927-0256(97)00029-3Google Scholar
5. Ohzuku, T., Ueda, A. and Nagayama, M., J. Electrochem. Soc. 140, 1862 (1993).Google Scholar
6. Dahn, J. R., von Sacken, U., Juskow, M. W. and Al-Janabi, J., J. Electrochem. Soc. 138, 2207 (1991).Google Scholar
7. Gummow, R. J., de Kock, A. and Thackeray, M. M., Solid State Ionics 69, 59 (1994).10.1016/0167-2738(94)90450-2Google Scholar
8. McKinnon, W. R., in Solid State Electrochemistry, edited by Bruce, P. G. (Cambridge University Press 1995) p. 163.Google Scholar
9. Van der Ven, A., Aydinol, M. K. and Ceder, G., J. Electrochem. Soc, submitted for publication (1998).Google Scholar
10. Van der Ven, A., Aydinol, M. K. and Ceder, G., These proceedings, 1997 MRS Fall Meeting, Boston, MA, 1997.Google Scholar
11. Wolverton, C. and Zunger, A., These proceedings, 1997 MRS Fall Meeting, Boston, MA, 1997.Google Scholar
12. Reimers, J. N., Dahn, J. R. and von Sachen, U., J. Electrochem. Soc. 140, 2752 (1993).10.1149/1.2220905Google Scholar
13. Ceder, G., Comput. Mat. Sci. 1, 144 (1993).Google Scholar
14. de Fontaine, D., in Solid State Physics, edited by Ehrenreich, H., Turnbull, D. (Academic Press 1994) vol. 47, p. 33.Google Scholar
15. Kohan, A. F. and Ceder, G., Comput. Mat. Sci. 8, 142 (1997).10.1016/S0927-0256(97)00027-XGoogle Scholar
16. Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A. and Joannopoulos, J. D., Rev. Mod. Phys. 64, 1045 (1992).10.1103/RevModPhys.64.1045Google Scholar
17. Kresse, G. and Furthmuller, J., Comput. Mat. Sci. 6, 15 (1996).Google Scholar
18. Kresse, G. and Furthmuller, J., Phys. Rev. B 54, 11169 (1996).Google Scholar
19. Tarascon, J. M., Wang, E., Shokoohi, F. K., McKinnon, W. R. and Colson, S., J. Electrochem. Soc. 138, 2859 (1991).10.1149/1.2085330Google Scholar
20. Ohzuku, T., Kitagawa, M. and Hirai, T., J. Electrochem. Soc. 137, 769 (1990).Google Scholar
21. Aydinol, M. K. and Ceder, G., J. Electrochem. Soc. 144, 3832 (1997).10.1149/1.1838099Google Scholar
22. Rougier, A., Graverau, P. and Delmas, C., J. Electrochem. Soc. 143, 1168 (1996).10.1149/1.1836614Google Scholar
23. Amatucci, G. G., Tarascon, J. M. and Klein, L. C., J. Electrochem. Soc. 143, 1114 (1996).Google Scholar
24. Jang, D. H., Shin, Y. J. and Oh, S. M., J. Electrochem. Soc. 143, 2204 (1996).Google Scholar
25. Amatucci, G. G., Tarascon, J. M. and Klein, L. C., Solid State Ionics 83, 167 (1996).10.1016/0167-2738(95)00231-6Google Scholar
26. Tarascon, J. M., McKinnon, W. R., Coowar, F., Bowmer, T. N., Amatucci, G. and Guyomard, D., J. Electrochem. Soc. 141, 1421 (1994).Google Scholar
27. Ohzuku, T., Ueda, A. and Kouguchi, M., J. Electrochem. Soc. 142, 4033 (1995).10.1149/1.2048458Google Scholar
28. Guyomard, D. and Tarascon, J. M., J. Power Sources 54, 92 (1995).10.1016/0378-7753(94)02046-6Google Scholar
29. Tarascon, J. M. and Guyomard, D., Solid State Ionics 69, 293 (1994).Google Scholar