Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T01:39:11.583Z Has data issue: false hasContentIssue false

Antibacterial activity by nanosilver particles

Published online by Cambridge University Press:  24 July 2012

Georgios A. Sotiriou
Affiliation:
Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering ETH Zurich, Sonneggstr. 3, 8092 Zurich
Sotiris E. Pratsinis
Affiliation:
Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering ETH Zurich, Sonneggstr. 3, 8092 Zurich
Get access

Abstract

The antibacterial activity of nanosilver against Gram negative Escherichia coli bacteria is investigated by immobilizing nanosilver on nanostructured silica particles and closely controlling Ag content and size. These Ag/SiO2 nanoparticles were characterized by S/TEM, EDX spectroscopy, X-ray diffraction. The antibacterical activity of these composite samples was investigated for a constant composite particle concentration. The highest activity was observed for the higher silver content particles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Hannemann, S., Grunwaldt, J.D., Krumeich, F., Kappen, P., Baiker, A., Electron microscopy and EXAFS studies on oxide-supported gold-silver nanoparticles prepared by flame spray pyrolysis, Appl. Surf. Sci. 252 (2006) 78627873.10.1016/j.apsusc.2005.09.065Google Scholar
[2] Height, M.J., S.E. Pratsinis Antimicrobial and antifungal powders made by flame spray pyrolysis. Eur. Patent, EP1846327 (A1), 2007.Google Scholar
[3] Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ramirez, J.T., Yacaman, M.J., The bactericidal effect of silver nanoparticles, Nanotechnology 16 (2005) 23462353.10.1088/0957-4484/16/10/059Google Scholar
[4] Loher, S., Schneider, O.D., Maienfisch, T., Bokorny, S., Stark, W.J., Micro-organism-triggered release of silver nanoparticles from biodegradable oxide carriers allows preparation of self-sterilizing polymer surfaces, Small 4 (2008) 824832.10.1002/smll.200800047Google Scholar
[5] Willets, K.A., Van Duyne, R.P., Localized surface plasmon resonance spectroscopy and sensing, Annu. Rev. Phys. Chem. 58 (2007) 267297.10.1146/annurev.physchem.58.032806.104607Google Scholar
[6] Quinten, M., The color of finely dispersed nanoparticles, Appl. Phys. B-Lasers Opt. 73 (2001) 317326.10.1007/s003400100666Google Scholar
[7] Lee, P.C., Meisel, D., Adsorption and surface-enhanced Raman of dyes on silver and gold sols, J. Phys. Chem. 86 (1982) 33913395.10.1021/j100214a025Google Scholar
[8] Lee, B.G., Griscom, S.B., Lee, J.S., Choi, H.J., Koh, C.H., Luoma, S.N., Fisher, N.S., Influences of dietary uptake and reactive sulfides on metal bioavailability from aquatic sediments, Science 287 (2000) 282284.10.1126/science.287.5451.282Google Scholar
[9] Erickson, B.E., Nanosilver pesticides, Chem. Eng. News 87(48) (2009) 2526.Google Scholar
[10] Auffan, M., Rose, J., Bottero, J.-Y., Lowry, G.V., Jolivet, J.-P., Wiesner, M.R., Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective, Nature Nanotechnol. 4 (2009) 634641.10.1038/nnano.2009.242Google Scholar
[11] Wijnhoven, S.W.P., Peijnenburg, W.J.G.M., Herberts, C.A., Hagens, W.I., Oomen, A.G., Heugens, E.H.W., Roszek, B., Bisschops, J., Gosens, I., Van De Meent, D., Dekkers, S., De Jong, W.H., van Zijverden, M., Sips, A.n.J.A.M., Geertsma, R.E., Nano-silver - a review of available data and knowledge gaps in human and environmental risk assessment, Nanotoxicology 3 (2009) 109138.10.1080/17435390902725914Google Scholar
[12] Li, P., Li, J., Wu, C.Z., Wu, Q.S., Synergistic antibacterial effects of beta-lactam antibiotic combined with silver nanoparticles, Nanotechnology 16 (2005) 19121917.10.1088/0957-4484/16/9/082Google Scholar
[13] Lok, C.N., Ho, C.M., Chen, R., He, Q.Y., Yu, W.Y., Sun, H., Tam, P.K.H., Chiu, J.F., Che, C.M., Silver nanoparticles: partial oxidation and antibacterial activities, J. Biol. Inorg. Chem. 12 (2007) 527534.10.1007/s00775-007-0208-zGoogle Scholar
[14] Baker, C., Pradhan, A., Pakstis, L., Pochan, D.J., Shah, S.I., Synthesis and antibacterial properties of silver nanoparticles, J. Nanosci. Nanotechnol. 5 (2005) 244249.10.1166/jnn.2005.034Google Scholar
[15] Tiwari, D.K., Behari, J., Sen, P., Time and dose-dependent antimicrobial potential of Ag nanoparticles synthesized by top-down approach, Curr. Sci. 95 (2008) 647655.Google Scholar
[16] Gunawan, C., Teoh, W.Y., Marquis, C.P., Lifia, J., Amal, R., Reversible antimicrobial photoswitching in nanosilver, Small 5 (2009) 341344.10.1002/smll.200801202Google Scholar
[17] Sotiriou, G.A., Pratsinis, S.E., Antibacterial activity of nanosilver ions and particles, Environ. Sci. Technol. 44 (2010) 56495654.10.1021/es101072sGoogle Scholar
[18] Lide, D.R., CRC Handbook of Chemistry and Physics. 89 (Internet version) ed.; CRC Press/Taylor and Francis: Boca Raton, FL, 2010.Google Scholar
[19] Benn, T.M., Westerhoff, P., Nanoparticle silver released into water from commercially available sock fabrics, Environ. Sci. Technol. 42 (2008) 41334139.10.1021/es7032718Google Scholar
[20] Navarro, E., Piccapietra, F., Wagner, B., Marconi, F., Kaegi, R., Odzak, N., Sigg, L., Behra, R., Toxicity of silver nanoparticles to Chlamydomonas reinhardtii, Environ. Sci. Technol. 42 (2008) 89598964.10.1021/es801785mGoogle Scholar
[21] Sotiriou, G.A., Sannomiya, T., Teleki, A., Krumeich, F., Vörös, J., Pratsinis, S.E., Non-toxic dry-coated nanosilver for plasmonic biosensors, Adv. Funct. Mater. in press (2010) 10.1002/adfm.201000985.10.1002/adfm.201000985Google Scholar
[22] Madler, L., Stark, W.J., Pratsinis, S.E., Simultaneous deposition of Au nanoparticles during flame synthesis of TiO2 and SiO2 , J. Mater. Res. 18 (2003) 115120.10.1557/JMR.2003.0017Google Scholar
[23] Madler, L., Pratsinis, S.E., Bismuth oxide nanoparticles by flame spray pyrolysis, J. Am. Ceram. Soc. 85 (2002) 17131718.10.1111/j.1151-2916.2002.tb00340.xGoogle Scholar
[24] Schulz, H., Madler, L., Pratsinis, S.E., Burtscher, P., Moszner, N., Transparent nanocomposites of radiopaque, flame-made Ta2O5/SiO2 particles in an acrylic matrix, Adv. Funct. Mater. 15 (2005) 830837.10.1002/adfm.200400234Google Scholar
[25] Lide, D.R., CRC Handbook of Chemistry and Physics. 89 (Internet version) ed.; CRC Press/Taylor and Francis: Boca Raton, FL, 2009.Google Scholar
[26] Strobel, R., Pratsinis, S.E., Flame aerosol synthesis of smart nanostructured materials, J. Mater. Chem. 17 (2007) 47434756.10.1039/b711652gGoogle Scholar