Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:38:34.676Z Has data issue: false hasContentIssue false

Another Step in Developing a Single Wafer Integrated Process: Rapid Thermal Low Pressure Metalorganic Chemical Vapor Deposition of Local Diffused W(Zn) Contacts

Published online by Cambridge University Press:  22 February 2011

A. Katz
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
A. Feingold
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
A. El-Roy
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
N. Moriya
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
A. Rusby
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
J. Kovalchick
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
C. R. Abernathy
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
M. Geva
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
E. Lane
Affiliation:
AT&T Bell Laboratories, Breinigsville, Pennsylvania 18031
Get access

Abstract

A selective deposition of W(Zn) metallization, for formation of diffused ohmic contacts onto InP-based material was realized by means of rapid thermal, low pressure metalorganic chemical vapor deposition (RT-LPMOCVD). The W(Zn) layers were deposited using a reactive gas mixture that contained diethylzinc (DEZn), WF6, H2 and Ar, at temperatures of 450 to 550°C and pressures in the range of 1–5 torr. Uniform andcontinuous layers of W(Zn), 30 to 120 nm thick, were obtained. These layers contained Zn at concentrations higher than 1×l018 cm−3, which was subsequentially in-diffused into the underlying semiconductor layer to form highly doped semiconductor layers as thick as 0.2μm. As a result, the specific contact resistance of the W(Zn)/ In0.53Ga0.47 As contact was reduced to minimum value of 5×l0−6 Ω·cm2. The W(Zn) film were found to be mechanically stable with a small compressive stress of 5.10−8 dyne. cm−2, and dry etch rates of up to 90 nmmin.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Maydan, D., Somerh, S., Wang, D. N., Cheng, D., Joshima, M., Harari, I. and Hoope, P. D., U.S.Patent 41 951601 (1990).Google Scholar
2. Katz, A. and Pearton, S. J., Mat. Chem. Phys., to be published (issue of October, 1992).Google Scholar
3. Katz, A., Feingold, A., Nakahara, S., Geva, M., Lane, E., Pearton, S. J., and Jones, K. S., J. Appl. Phys. 69, 7664 (1991).Google Scholar
4. Katz, A., El-Roy, A., Feingold, A., Geva, M., Moriya, N., Pearton, S. J., Lane, E., Keel, T., and Abernathy, C. R., Appl. Phys. Lett., to be published (1992).Google Scholar
5. Katz, A., Feingold, A., Pearton, S. J., Chakrabarti, U. K., and Lee, K. M., Semicon. Sci. Technol. 7, 583(1992).Google Scholar
6. Katz, A., Feingold, A., and Pearton, S. J., Semicon. Sci. Technol. 7, 436 (1992).Google Scholar
7. Katz, A., Feingold, A., Nakahara, S., Pearton, S. J., Lane, E., Geva, M., Stevie, F. A., and Jones, K. S., J. Appl. Phys. 71, 993 (1992).Google Scholar
8. Green, M. L. and Levy, R. A., J. Electrochem. Soc. 132, 1243 (1985).Google Scholar
9. Paine, D. C., Bravman, J. C., and Yang, C. Y., Appl. Phys. Lett. 50, 498 (1987).Google Scholar
10. Broadbent, E. K. and Stacy, W. T., Solid State Technol. 2, 51 (1985).Google Scholar
11. Blewer, R. S., Solid State Technol. 29, 117 (1986).Google Scholar
12. Wong, M., Kabayashi, N., Browning, R., Paine, D., and Saraswat, K. S., J. Electrochem. Soc. 134, 2339(1987).Google Scholar
13. Broadbent, E. K. and Ramiller, C. L., J. Electrochem. Soc. 134, 370 (1987).Google Scholar