Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:21:46.504Z Has data issue: false hasContentIssue false

Anomalous Kinetics of the Trapping Reaction in One Dimension Under Steady State Conditions

Published online by Cambridge University Press:  10 February 2011

Anna L. Lin
Affiliation:
Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, USA
Raoul Kopelman
Affiliation:
Department of Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, USA
Get access

Abstract

We study the A + B→B trapping reaction under steady state conditions for the case in which both A particles and traps(B) are mobile. Using Monte Carlo simulations, we follow the kinetic rate law in one dimension. Anomalies arise due to self-organization of the A particles, which results in a slower steady state reaction rate than is predicted classically. We find a partial order of reaction with respect to trap density of X = 2, and an overall order for the reaction of Z = 3.2. These results are in agreement with other works which predict an exponential rather than an algebraic decay law with respect to the A particle density.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Agranovich, V.M. and Galanin, M.D., Modern Problems in Condensed Matter Sciences, vol. 3, Agranovich, V.M and Galanin, M.D. eds. (North Holland Publishing Company, Amsterdam) 254 (1982).Google Scholar
[2] Weiss, G., Kopelman, R. and Havlin, S., Phys. Rev. A 39 466 (1989).Google Scholar
[3] Kopelman, R., Topics Appl. Phys., 15 298 (1976).Google Scholar
[4] Kopelman, R., Science 241 1620 (1988).Google Scholar
[5] Blumen, A., Klafter, J. and Zumofen, G., Optical Spectroscopy of Glasses, Zschokke, I., ed. (Reidel Publ. Co., Dordrecht) 1986.Google Scholar
[6] Smoluckowski, Z., Z. Phys. Chem. 29 129 (1917).Google Scholar
[7] Donsker, M.D. and Varadhan, S.R.S., Commun. Pure Appl. Math. 32.721 (1979).Google Scholar
[8] Klafter, J., Blumen, A. and Zumofen, G., J. Stat. Phys. 36.561 (1984).Google Scholar
[9] Felderhof, B.U. and Deutch, J.M., J. Chem. Phys. 64 4551 (1976).Google Scholar
[10] Clement, E., Kopelman, R. and Sander, L.M., Europhys. Lett. 11 707 (1990).Google Scholar
[11] Anacker, L.W. and Kopelman, R., in Science at the John von Neumann National Supercomputer Center, 1988, Consortium for Scientific Computing, Princeton, NJ 11 (1989).Google Scholar
[12] Zumofen, G., Klafter, J. and Blumen, A., J. Phys. A/17 L- 49 (1984).Google Scholar
[13] Schoonover, R. and Kopelman, R., Mat. Res. Symp. Proc. 290 255 (1993).Google Scholar
[14] Anacker, L.W., Clement, E., Kopelman, R., in Fractal Aspects of Materials, eds. Kaufman, J.H., Martin, J.E., Schmidt, P.W., Materials Research Society Extended Abstracts, Pittsburgh 271 (1989).Google Scholar
[15] Kuzovkov, V. and Kotomin, E., Phys. Rev. Lett. 72 2105 (1994).Google Scholar
[16] Burlatsky, S.F., Moreau, M., Oshanin, G. and Blumen, A., Phys. Rev. Lett. 75 585 (1995) and D.P. Bhatia, M.A. Prasad, and D. Arora, Phys. Rev. Lett. 75 586 (1995).Google Scholar
[17] Argyrakis, P., Computers in Physics 6, 525 (1992).Google Scholar
[18] Schoonover, R., Ph. D. Thesis, University of Michigan, Ann Arbor (1993).Google Scholar