Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:42:09.617Z Has data issue: false hasContentIssue false

Anomalous Diffusion in Membranes

Published online by Cambridge University Press:  10 February 2011

R. Granek
Affiliation:
Department of Materials and Interfaces Weizmann Institute of Science Rehovot 76100, Israel
S. Pierrat
Affiliation:
Department of Materials and Interfaces Weizmann Institute of Science Rehovot 76100, Israel
A. G. Zilman
Affiliation:
Department of Materials and Interfaces Weizmann Institute of Science Rehovot 76100, Israel
Get access

Abstract

We study the undulations and the transverse diffusion of a tagged membrane point in both physical (passive) membranes and active biomembranes. In physical membranes thermal undulations generate a transverse subdiffusive motion, 〈r2〉 ∼ t2/3. Active biomembranes include active sites that use chemical energy to pump ions or molecules from one side to the other. In this case we find a few regimes which show a strongly enhanced diffusion, 〈r2〉 ∼ tα with 1 < α > 2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Micelles, Membranes, Microemulsions and Monolayers, eds. Gelbart, W. M., Ben-Shaul, A. and Roux, D. (Springer, N.Y., 1994); S. A.Safran, Statistical Thermodynamics of Surfaces, Interfaces, and Membranes, Frontiers in Physics – volume 90 (Addison- Wesley, N.Y., 1994); Statistical Mechanics of Membranes and Surfaces, eds. D. Nelson et al. (World Scientific, Singapore, 1989).Google Scholar
[2] Structure and Dynamics of Membranes, Lipowsky, R. and Sackmann, E. eds. (Elsevier, Amsterdam, 1995).Google Scholar
[3] Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. D., Molecular Biology of The Cell, third edition (Gerland Pub, New York, 1994).Google Scholar
[4] Prost, J. and Bruinsma, R., Europhys. Lett. 33, 321 (1996).Google Scholar
[5] Prost, J., Manneville, J. -B., and Bruinsma, R., Eur. Phys. J. B 1, 465 (1998).Google Scholar
[6] Zilman, A. G. and Granek, R., Phys. Rev. Lett. 77, 4788 (1996).Google Scholar
[7] Granek, R., J. Phys. II France 7, 1761 (1997).Google Scholar
[8] Klafter, J., Zumofen, G., and Shlesinger, M. F., in The Physics of Complex Systems, Proceedings of The International School of Physics “Enrico Fermi”, Course CXXXIV, eds. Mallamace, F. and Stanely, H. E. (IOS press, Amsterdam, 1997).Google Scholar
[9] Helfrich, W. F., Z. Naturforsch 28, 693 (1973).Google Scholar
[10] Brochard, F., and Lennon, J. -F., J. Phys. (Paris) 11, 1035 (1975).Google Scholar
[11] Messager, R.et al., J. Physique 51, 1329 (1990).Google Scholar
[12] Doi, M. and Edwards, S. F., The Theory of Polymer Dynamics (Clarendon, Oxford, 1986), pp. 8889.Google Scholar
[13] Freyssingeas, E., Roux, D., and Nallet, F., J. Phys. II France 7, 913 (1997).Google Scholar
[14] Almeida, P. F. F. and Vaz, W. L. C. in Ref. 2, Chapter 6.Google Scholar
[15] Gardiner, C. W., Handbook of Stochastic Methods (Springer-Verlag, New York, 1994).Google Scholar