Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T17:40:53.983Z Has data issue: false hasContentIssue false

Anomalous behaviour of stain etched porous silicon photoluminescence

Published online by Cambridge University Press:  01 February 2011

Ricardo Guerrero-Lemus
Affiliation:
Dept. Física Básica, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez s/n, 38204 La Laguna, S/C Tenerife, SPAIN.
Fathi A. Ben-Hander
Affiliation:
Dept. Física Aplicada C-XII, Universidad Autónoma de Madrid, 28049 Madrid, SPAIN.
Cecilio Hernández-Rodríguez
Affiliation:
Dept. Física Básica, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez s/n, 38204 La Laguna, S/C Tenerife, SPAIN.
José M. Martínez-Duart
Affiliation:
Dept. Física Aplicada C-XII, Universidad Autónoma de Madrid, 28049 Madrid, SPAIN.
Get access

Abstract

In this work we present a comparative study of porous silicon (PS) photoluminescence for samples stain etched and electrochemically etched. The etching parameters for both types of samples have been adjusted to obtain similar porous structures. The photoluminescence spectra have been obtained varying the excitation energy between 2.48 and 3.54 eV. The variation of the excitation energy produces differences in the evolution of the emission energy maximum between both types of PS. This behaviour is attributable to the differences in oxidation level in the porous structure. Also it has been established a higher concentration of luminescent centers for stain etched PS.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Uhlir, A., Bell Syst. Tech. J. 35, 333 (1956).Google Scholar
2. Canham, L.T., Appl. Phys. Lett. 57, 1047 (1990).Google Scholar
3. Koshida, N. and Koyama, H., Appl. Phys. Lett. 60, 314 (1992).Google Scholar
4. Fathauer, R.W. George, T., Vasquez, A. Ksendzov y R.P., Appl. Phys. Lett. 60, 995 (1992).Google Scholar
5. Sarathy, J., Shih, S., Jung, K., Tsai, C., Li, K.-H., Kwong, D.-L., Campbell, J.C., Yau, S.-L. and Bard, A.J., Appl. Phys. Lett. 60, 1532 (1992).Google Scholar
6. George, T., Anderson, M.S., Pike, W.T., Lin, T.L., Fathauer, R.W., Jung, H. and Kwong, D.L., Appl. Phys. Lett. 60, 2359 (1992).Google Scholar
7. Guerrero-Lemus, R., Hernández-Rodríguez, C., Ben-Hander, F. and Martínez-Duart, J.M., Solar Energy Mat. and Solar Cells 72, 495 (2002).Google Scholar
8. Yerokhov, V.Y. and Melnik, I.I., Renewable and Sustainable Energy Rev. 3, 291 (1999).Google Scholar
9. Guerrero-Lemus, R., Ben-Hander, F., Fierro, J.L.G., Hernández-Rodríguez, C. and Martínez-Duart, J.M., Phys. Status Solidi A (in press) (2003).Google Scholar
10. Guerrero-Lemus, R., Ben-Hander, F., Vázquez, L., Hernández-Rodríguez, C. and Martínez-Duart, J.M., Phys. Status Solidi A (in press) (2003).Google Scholar
11. Robinson, M.B., Dillon, A.C. and George, S.M., Appl. Phys. Lett. 62, 1493 (1993).Google Scholar
12. Thonissen, M., Billat, S., Kruger, M., Luth, H., Berger, M.G., Frotscher, U. and Rossow, U., J. Appl. Phys. 80, 2990 (1996).Google Scholar
13. Volkin, M.V., Jorne, J., Fauchet, P., Allan, G. and Delerue, C., Phys. Rev. Lett. 82, 197 (1999).Google Scholar
14. Fuchs, H.D., Stutzmann, M., Brandt, M.S., Rosenbauer, M., Weber, J., Breitschwerdt, A., Deak, P. and Cardona, M., Phys. Rev. B48, 8172 (1993).Google Scholar
15. Tong, S., Liu, X. and Bao, X., Appl. Phys. Lett. 66, 469 (1995).Google Scholar
16. Banerjee, S., Phys. Rev. B51, 11180 (1995).Google Scholar