Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T07:39:20.989Z Has data issue: false hasContentIssue false

Anomalous Behavior in Spin Dependent Tunnel Junctions

Published online by Cambridge University Press:  15 February 2011

C. L. Platt
Affiliation:
Dept. of Physics and Center for Magnetic Recording Research, University of California, San Diego, La Jolla CA 92093–0401.
B. Dieny
Affiliation:
CEA/Département de Recherche Fondamentale sur la Matière Condensée, SP2M/NM, 38054 Grenoble Cedex 9, France.
A.E. Berkowitz
Affiliation:
Dept. of Physics and Center for Magnetic Recording Research, University of California, San Diego, La Jolla CA 92093–0401.
Get access

Abstract

Spin dependent tunneling has been investigated in tunnel junctions composed of a variety of materials. The best results thus far have been with either HfO2 or MgO as the barrier layer using CoFe, Fe, or Co as the magnetic electrodes. The maximum magnetoresistive (MR) response of these junctions has been at low temperatures on the order of 30% in HfO2 and 20% in MgO. We have also observed a variety of anomalous behavior in some of our tunnel junctions at low temperature. These include MR effects dependent on the angle of orientation of the tunnel junction in the applied magnetic field, transition fields greater than lOkOe, and negative MR effects on the order of 2%.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Juliiere, M., Physics Letters 54A, 225 (1975).Google Scholar
2. Slonczewski, J. C., Phys. Rev. B 39, 6995 (1989).Google Scholar
3. Maekawa, S. and Gäfvert, U., IEEE Trans. Magn. 18, 707 (1982).Google Scholar
4. Suezawa, Y. and Gondo, Y., Proceedings of the International Symposium on Physics of Magnetic Materials, Sendai, (World Scientific, Singapore, 1987) p 303; J. Magn. Mater. 126, 524 (1993).Google Scholar
5. Nowak, J. and Rauluszkiewicz, J., J. Magn. Magn. Mater. 109, 79 (1992).Google Scholar
6. Nakatani, R. and Kitada, M., J. Mater. Sci. Lett. 10, 827 (1991).Google Scholar
7. Suezawa, Y., Takahashi, F., and Gondo, Y., Jpn. J. Appl. Phys. 31, L1415 (1992).Google Scholar
8. Miyazaki, T., Yaoi, T., and Ishio, S., J. Magn. Magn. Mater. 98, L7 (1991).Google Scholar
9. Miyazaki, T. and Tezuka, N., J. Magn. Magn. Mater. 139, L231 (1995).Google Scholar
10. Plaskett, T. S., Freitas, P. P., Barradas, N. P., da Silva, M. F. and Soares, J. C., J. Appl. Phys. 76, 6104 (1994).Google Scholar
11. Moodera, J. S., Kinder, L. R., Wong, T. M., and Meservey, R., Phys. Rev. Lett. 74, 3273 (1995);Google Scholar
Moodera, J. S., Kinder, L. R., J. Appl. Phys. 79, 4724 (1996).Google Scholar
12. LeClair, P., Moodera, J. S., and Meservey, R., J. Appl. Phys. 76, 6546 (1994).Google Scholar
13. Platt, C. L., Dieny, B., Berkowitz, A. E., Appl. Phys. Lett. 69, 2291 (1996).Google Scholar
14. Platt, C. L., Dieny, B., Berkowitz, A. E., to be published in J. Appl. Phys.Google Scholar
15. Vedyayev, A., Giacomoni, L., Ryzhanova, N., Lacroix, N., and Dieny, C., to be published in Europhys. Lett.Google Scholar