Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T23:05:11.511Z Has data issue: false hasContentIssue false

Anomalous Bands in the Photoluminescent Spectra from GaAs-(AI,Ga) as Double Heterostructures

Published online by Cambridge University Press:  15 February 2011

V. Swaminathan
Affiliation:
Bell Telephone Laboratories, Murray Hill, NJ 07974 (U.S.A.)
W. R. Wagner
Affiliation:
Bell Telephone Laboratories, Murray Hill, NJ 07974 (U.S.A.)
N. E. Schumaker
Affiliation:
Bell Telephone Laboratories, Murray Hill, NJ 07974 (U.S.A.)
R. C. Miller
Affiliation:
Bell Telephone Laboratories, Murray Hill, NJ 07974 (U.S.A.)
Get access

Extract

In the low temperature (5.5 K) photoluminescent spectra from (Al,Ga)As double heterostructures grown by liquid phase epitaxy (LPE) for laser devices, certain anomalous emission bands higher in energy than the active laye emission but lower in energy than the cladding layer emission are observed. The peak wavelengths and intensities of these anomalous emission bands vary not only from wafer to wafer but also within a given wafer indicating spatial localization of these regions. Photoluminescence measurements on cleaved edges of wafers and on taperetched wafers as well as double-crystal X-ray diffractometry measurements suggest that the anomalous emission bands originate from interfacial regions having different aluminum compositions which are formed between the active and cladding layers presumably as a result of melt carry-over during LPE growth. The integrated photoluminescent intensity of the anomalous emission bands decreases with temperature in the range 75–300 K by nearly two orders of magnitude suggesting the role of some non-radiative process. The spatially localized regions of different aluminum compositions could act as sources and/or sinks for point defects and thus could affect the reliability of devices. Further, their presence would also reflect nonuniformity in the aluminum composition in the active layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Dixon, R. W., Bell Syst. Tech. J., 59 (1980) 669.CrossRefGoogle Scholar
2 Anthony, P. J., Zilko, J. L., Hartman, R. L., Schumaker, N. E., Swaminathan, V. and Wagner, W. R., IEEE Electron Devices Lett., 2 (1981) 50.Google Scholar
3 Swaminathan, V. and Schumaker, N. E., unpublished, 1980.Google Scholar
4 Logan, R. A. and Reinhart, F. K., J. Appl. Phys., 44 (1973) 4172.Google Scholar
5 Monemar, B., J. Appl. Phys., 49 (1978) 2922.Google Scholar
6 Miller, R. C., Tsang, W. T. and Nordland, W. A. Jr., Phys. Rev. B, 21 (1980) 1569.CrossRefGoogle Scholar
7 Bartels, W. J. and Nijman, W., J. Cryst. Growth, 44 (1978) 518.Google Scholar
8 Swaminathan, V., Anthony, P. J., Zilko, J. L., Sturge, M. D. and Schumaker, N. E., J. Appl. Phys., 52 (1981) 5603.Google Scholar
9 Nash, F. R., Dixon, R. W., Barnes, P. A. and Schumaker, N. E., Appl. Phys. Lett., 27 (1975) 234.Google Scholar
10 Swaminathan, V., Schumaker, N. E. and Zilko, J. L., J. Lumin., 22 (1981) 153.Google Scholar
11 Swaminathan, V., Schumaker, N. E., Zilko, J. L., Wagner, W. R. and Parsons, C. A., J. Appl. Phys., 52 (1981)412. V. Swaminathan, unpublished, 1980.Google Scholar
12 Parsons, R. R., Phys. Rev. Lett., 23 (1969) 1152.Google Scholar
13 Bir, G. L., Butikov, E. I. and Pikus, G. E., J. Phys. Chem. Solids, 24 (1963) 1475.Google Scholar
14 Petroff, P. M. and Logan, R. A., J. Vac. Sci. Technol., 17 (1980) 1113.Google Scholar
15 Kordos, P., Pearson, G. L. and Panish, M. B., J. Appl. Phys., 50 (1979) 6902.CrossRefGoogle Scholar
16 Levin, E. R. and Ladany, I., J. Appl. Phys., 49 (1978) 3025.CrossRefGoogle Scholar
17 Ladany, I. and Levin, E. R., J. Appl. Phys., 50 (1979) 4128.Google Scholar
18 Logan, R. A., Schumaker, N. E., Henry, C. H. and Merritt, F. R., J. Appl. Phys., 50 (1979) 5972.Google Scholar
19 Elliot, C. R., Faktor, M. M., Haigh, J. and Taylor, M. R., Solid-State Electron., 22 (1979) 446.Google Scholar
20 Wakefield, B., Appl. Phys. Lett., 33 (1978) 408.Google Scholar
21 Lee, T. P., Burrus, C. A., Miller, B. I. and Logan, R. A., IEEE J. Quantum Electron., 11 (1975) 432.Google Scholar
22 Hakki, B. W., Gaw, C. A., Holbrook, W. R. and Schumaker, N. E., unpublished, 1981.Google Scholar
23 Van Vechten, J. A., J. Electrochem. Soc., 122 (1975) 1556.CrossRefGoogle Scholar
24 Blom, G. M., J. Cryst. Growth, 36 (1976) 125.Google Scholar
25 Petroff, P. M., in Narayan, J. and Tan, T. Y. (eds.), Defects in Semiconductors, North-Holland, New York, 1981, p. 457.Google Scholar