Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T23:16:39.795Z Has data issue: false hasContentIssue false

Anomalies of the Fast Relaxation Dynamics at Tg In Strong Glass Formers

Published online by Cambridge University Press:  10 February 2011

A. Brodin
Affiliation:
Department of Physics, Chalmers University of Technology, S-412 96 Göteborg, Sweden
L. M. Torell
Affiliation:
Department of Physics, Chalmers University of Technology, S-412 96 Göteborg, Sweden
Get access

Abstract

Structural dynamics of two network forming glasses, B2O3 and GeO2, has been investigated by Raman scattering over a wide temperature range from ∼10 K to above the respective glass transition temperatures (Tg = 526 K for B2O3 and 800 K for GeO2). The spectra are analyzed in terms of two distinct contributions, related to vibrational and fast relaxational dynamics, respectively, and conventionally referred to as the boson peak (BP) and quasielastic scattering (QS). A quantity proportional to the fast relaxation strength may be deduced from the integral intensity of QS relative to BP of the spectra. It turns out, that for T < Tg the so-obtained QS intensity of the two glasses is similar and smoothly temperature dependent, and can qualitatively be described by e.g. the defect model or the soft potential model. As Tg is passed, there is a pronounced change in behavior and dramatic differences between the two systems are observed. Thus, the fast relaxational dynamics is obviously affected by Tg, a finding which is in contrast to the predictions of the mode coupling theory (MCT) of a single crossover temperature Tc > Tg. Moreover, the experimentally obtained value of the MCT exponent a, describing the shape of the fast dynamics, is by far exceeding the limiting value (a ≈ 0.395) of the theory, the deviation increasing with the strength of the system (a ≈ 0.7 for B2O3 and ≈ 0.9 for GeO2). The observed difference between the two glasses is discussed in terms of the fragility of the system manifested in jumps in the specific heat temperature dependences.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jäcle, J., Rep. Prog. Phys. 49, 171 (1986).Google Scholar
2. Götze, W. and Sjögren, L., Rep. Prog. Phys. 55, 241 (1992).Google Scholar
3. Angell, C. A., Science 267, 1924 (1995).Google Scholar
4. Bengtzelius, U., Götze, W. and Sjölander, A., J. Phys. C 17, 5915 (1984).Google Scholar
5. Leutheusser, E., Phys. Rev. A 29, 2765 (1984).Google Scholar
6. van Megen, W., Underwood, S. M. and Pusey, P. N., Phys. Rev. Lett. 67, 1586 (1991).Google Scholar
7. van Megen, W. and Underwood, S. M., Phys. Rev. Lett. 70, 2766 (1993).Google Scholar
8. Knaak, W., Mezei, F., Farago, B., Europhys. Lett. 7, 529 (1988).Google Scholar
9. Li, G., Du, W. M., Chen, X. K., Cummins, H. Z., and Tao, N. J., Phys. Rev. A 45, 3867 (1992).Google Scholar
10. Li, G., Du, W. M., Sakai, A., Cummins, H. Z., Phys. Rev. A 46, 3343 (1992).Google Scholar
11. Du, W. M., Li, G., Cummins, H. Z., Fuchs, M., Toulouse, J., and Knauss, L. A., Phys. Rev. E 49, 2192(1994).Google Scholar
12. Steffen, W., Patkowski, A., Gläser, H., Meier, G., and Fischer, E. W., Phys. Rev. E 49, 2992 (1994).Google Scholar
13. Rössler, E., Sokolov, A. P., Kisliuk, A., Quitmann, D., Phys. Rev. B 49, 14967 (1994).Google Scholar
14. Wuttke, J., Hernaudez, J., Li, G., Coddens, G., Cummins, H. Z., Fujara, F., Petry, W., and Sillescu, H., Phys. Rev. Lett. 72, 3052 (1994).Google Scholar
15. Brodin, A., Börjesson, L., Engberg, D., Torell, L.M., and Sokolov, A.P., Phys. Rev. B 53, 11511(1996)Google Scholar
16. Berret, J. F. and Meissner, M., Z. Phys. B 70, 65 (1988).Google Scholar
17. Sokolov, A. P., Rössler, E., Kisliuk, A. and Quitmann, D., Phys. Rev. Lett. 71, 2062 (1993).Google Scholar
18. Sokolov, A. P., Kisliuk, A., Quitmann, D., Kudlik, A., and Rössler, E., J. Non-Cryst. Sol. 172–174, 138(1994).Google Scholar
19. Jäckie, J., in: Amorphous Solids: Low-Temperature Properties (Ref. 26), p. 135.Google Scholar
20. Shuker, R. and Gammon, R. W., Phys. Rev. Lett. 4, 222 (1970).Google Scholar
21. Sokolov, A. P., Kisliuk, A., Quitmann, D., and Duval, E., Phys. Rev. B 48, 7692 (1993).Google Scholar
22. Carini, G., D'Angelo, G., Tripodo, G., Fontana, A., Leonardi, A., Saunders, G. A., and Brodin, A., Phys. Rev. B 52, 9342 (1995).Google Scholar
23. Winterling, G., Phys. Rev. B 12, 2432 (1975).Google Scholar
24. Martin, R. M. and Galeener, F. L., Phys. Rev. B 23, 3071 (1981).Google Scholar
25. Sokolov, R. M., Steffen, W. and Rössler, E., Phys. Rev. E 52, 5105 (1995).Google Scholar
26. For a review, see Amorphous Solids: Low-Temperature Properties, edited by Phillips, W. A. (Springer-Verlag, Berlin, 1981).Google Scholar
27. Buchenau, U., Galperin, Yu.M., Gurevich, V.L., Parshin, D.A., Ramos, M.A., and Schober, H.R., Phys. Rev. B 46, 2798 (1992).Google Scholar
28. Tielbürger, D., Merz, R., Ehrenfels, R., and Hunklinger, S., Phys. Rev. B 45, 2750 (1992).Google Scholar
29. Brodin, A. and Torell, L.M., J. Ram. Spectrosc. 27, 723 (1996).Google Scholar