Article contents
Annular Dark Field Imaging in Stem
Published online by Cambridge University Press: 21 February 2011
Abstract
Annular dark field scanning transmission electron microscopy (ADF STEM) is chemically sensitive at high spatial resolution (e.g., 1.8ë at 100keV). Images can be digitally acquired and recorded, permitting quantitative analysis. It is particularly powerful when used in combination with complementary analysis modes such as x-ray microanalysis and transmission electron energy loss spectroscopy. Critical to the interpretation of these data is an understanding and determination of the electron probe intensity, shape and propagation characteristics inside the specimen. Quantitative measurements of diffraction patterns and images in comparison with computer-based simulations (including phonon scattering) provide a basis for developing that information. Results of a series of studies are reviewed that address questions such as defocus and other instrumental factors, and also the formation of channeling peaks that appear on the atomic columns along zone axes. For example, along Si(100) a peak forms and penetrates over 500ë whereas along Ge(100) it developes rapidly but disappears in less than 200ë. In higher atomic number elements, the penetration is even less (e.g. 1 O0ë for In).
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1994
References
REFERENCES
- 6
- Cited by