Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T23:09:19.722Z Has data issue: false hasContentIssue false

Annealing Characteristics Of Low Temperature Grown GaAs:Be

Published online by Cambridge University Press:  15 February 2011

D. E. Bliss
Affiliation:
Center for Advanced Materials, Materials Science Division, Lawrence Berkeley Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 Dept. of Materials Science, University of California at Berkeley, Berkeley, CA 94720
W. Walukiewicz
Affiliation:
Center for Advanced Materials, Materials Science Division, Lawrence Berkeley Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720
K. T. Chan
Affiliation:
Hewlett-Packard Co. Microwave Technology Division, Santa Rosa, CA 95403
J. W. Ager III
Affiliation:
Center for Advanced Materials, Materials Science Division, Lawrence Berkeley Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720
S. Tanigawa
Affiliation:
Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305, Japan
E. E. Haller
Affiliation:
Center for Advanced Materials, Materials Science Division, Lawrence Berkeley Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 Dept. of Materials Science, University of California at Berkeley, Berkeley, CA 94720
Get access

Abstract

We have studied the annealing characteristics of acceptor doped GaAs:Be grown at Low substrate Temperatures (300°C) by Molecular Beam Epitaxy (LTMBE). The Be was introduced in a range of concentrations from 1016 –1019 cm−3. As-grown material was found to be n-type even up to the highest Be concentration of 1019 cm−3 although Raman spectroscopy of the Be local vibrational mode indicates that the majority of the Be impurities are substitutional. We propose that Be acceptors are rendered inactive by the high concentration of AsGa-related native donor defects present. Results of slow positron annihilation studies indicate an excess concentration of VGa in LTMBE layers over bulk grown crystals. A distinct annealing stage at 500°C, similar to irradiation damaged and plastically deformed GaAs, marks a rapid decrease in the AsGa defect concentration. A second annealing stage at 800°C corresponds to the activation of Be acceptors. Analysis of isothermal annealing kinetics for the removal of AsGa-related defects gives an activation energy of 1.7 ±0.3 eV. We model the defect removal mechanism with the VGa assisted diffusion of ASGa to As precipitates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Muratani, T., Shimanoe, T. and Mitsui, S., J. Cryst. Growth 45 302 (1978).Google Scholar
[2]Smith, F. W., Calawa, A. R., Chen, G-L., Manfra, M. J., and Mahoney, L.J., IEEE Elect.Dev.Lett. 9, 77 (1988).Google Scholar
[3]Kaminska, M., Weber, E. R., Liliental-Weber, Z., Leon, R., and Rek, Z., J. Vac. Sci.Technol. B 7, 710 (1989).Google Scholar
[4]Kaninska, M.K, Liliental-Webber, Z., Weber, E.R., George, T., Smith, F.W., Tsaur, B.-Y. and Calawa, A.R.. Appl Phys. Lett. 54 1881 (1989)10.1063/1.101229Google Scholar
[5]Melloch, M. R, Otsuka, N., Woodall, J. M., Warren, A. C., Appl. Phys. Lett. 57, 1531 (1990).Google Scholar
[6]Look, D.C.. Walters, D.C., Manasch, M.O., Sizelove, J.R., Stutz, C.E. and Evans, K.R., Phys. Lett. B. 42 3578 (1990).Google Scholar
[7]Winer, K., Kawashima, M. and Horikoshi, Y., Appl. Phys. Lett. 58 2818 (1991).Google Scholar
[8]Duhamel, N., Henoc, P., Alexandre, F. and Rao, E.V.K., Appl. Phys. Lett. 39 49 (1981).10.1063/1.92533Google Scholar
[9]Bliss, D.E., Walukiewicz, W., Chan, K., Ager, J.W., Tanigawa, S., and Haller, E.E. (submitted to J.Appl.Phys.9/91)Google Scholar
[10]Martin, G.M., Appl. Phys. Lett. 39, 747 (1981).Google Scholar
[11]Lee, J-L., Uedono, A., and Tanigawa, S., J. Appl. Phys. 67 6153 (1990).10.1063/1.345177Google Scholar
[12]Farmer, J.W. and Look, D.C., Phys. Rev. B. 21 3389 (1980).Google Scholar
[13]Weber, E.R. and Schneider, J., Physica, 116B 398 (1983).Google Scholar
[14]Coates, R. and Mitchell, E.W.J., Advan. in Phys. 24 593 (1975).10.1080/00018737500101471Google Scholar
[15] see e.g. Fig. 14 in Dlubek, G. and Kruse, R., Phys Stat. Sol. (a) 102 443 (1987).10.1002/pssa.2211020202Google Scholar
[16]Zhang, S.B. and Northrup, J.E., submitted to Phys. Rev. Lett. 9/91Google Scholar