Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T07:41:45.780Z Has data issue: false hasContentIssue false

Annealing Behavior of GaAs/ZnSe Multilayered Heteezostruciures Crown by Omvpe

Published online by Cambridge University Press:  25 February 2011

P.A. Murawala
Affiliation:
Dept. Electrical Eng., Kyoto Univ., Kyoto 606, Japan R&D Div., Samco Int. Inc., 33 Tanakamiya-cho, Takeda, Kyoto 612, Japan
M. Funato
Affiliation:
Dept. Electrical Eng., Kyoto Univ., Kyoto 606, Japan
O. Tsuji
Affiliation:
R&D Div., Samco Int. Inc., 33 Tanakamiya-cho, Takeda, Kyoto 612, Japan
Sz. Fujita
Affiliation:
Dept. Electrical Eng., Kyoto Univ., Kyoto 606, Japan
Sg. Fujita
Affiliation:
Dept. Electrical Eng., Kyoto Univ., Kyoto 606, Japan
Get access

Abstract

We have investigated effect of annealing at the interfaces of GaAs/ZnSe heterostructures, grown by OMVPE using TEGa, TBAs, DEZn and DMSe sources. For this work, we have annealed single quantum well (SQW), double quantum well (DQW) and super-lattice (SL) of GaAs/ZnSe heterostructures up to 640°C and characterized them by double crystal x-ray and photoluminescence. X-ray rocking curves of all these heterostructures showed a main peak due to diffraction from effective lattice parameters of epilayers and 5 satellite peaks in addition to one sharp peak from GaAs substrate. After annealing upto 640°C FWHM and position of these peaks remain unchanged, however peak height increases and small satellite peaks become more sharp and clear. Photoluminescence of these structures showed luminescence from Cu-Green and self-activated (SA) centers of ZnSe and an intense, sharp peak from GaAs. Annealing at up to 640°C did not much affect the PL intensities except that relative peak intensities of Cu-Green and SA centers showed variation which is interpreted in terms of migration of VZn and nearly no significant interdiffusion between GaAs and ZnSe layers. These factors suggest that these heterostructures are stable such that interdiffusion at interfaces is not very appreciable against thermal treatment upto 640°C and hence they are of potential importance for device applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nicholls, J.E., Davies, J.J., Cavenett, B.C., James, J.R. and Dunstan, D.L., J. Phys. C: Solid State Physics, 12, 361 (1979).CrossRefGoogle Scholar
2. Dean, P.J., Phys. Stat. Sol. (a), 81, 625 (1984).Google Scholar
3. Watkins, G.D., Proc. Int. Conf. Radiation Effects in Semiconductors, Dubrovnik, 1976, Inst. Phys. Conf. Ser. No.31, 95 (1977).Google Scholar
4. Fujita, Sg., Murawala, P.A., Wu, Y.-h., Tsuji, O., Kawakami, Y. and Fujita, Sz., Proc. Int. Conf. Electron. Mater., New Ark, (1990).Google Scholar
5. Murawala, P.A., Maruo, S., Tsuji, O., Fujita, Sz. and Fujita, Sg., Proc. Int. Conf. Electron. Mater., New Ark, p. 239 (1990).Google Scholar
6. Murawala, P.A., Maruo, S., Tsuji, O., Fujita, Sz. and Fujita, Sg., Extended Abstracts of Int. Conf. Solid-St. Devices Mater., Sendai, p. 493 (1990).Google Scholar
7. Fujita, Sg., Murawala, P.A., Maruo, S., Tsuji, O. and Fujita, Sz., Jpn. J. Appl. Phys., 30, L28 (1991).Google Scholar
8. Chen, C.H., Larson, C.A. and Stringfellow, G.B., Appl. Phys. Lett., 50, 218 (1987).Google Scholar
9. Lun, R.M., Klingert, J.K. and Lamont, M.G., Appl. Phys. Lett., 50, 284 (1987).Google Scholar
10. Larsen, C.A., Buchan, N.I., Li, S.H. and Stringfellow, G.B., J. Cryst. Growth, 93, 15 (1988).CrossRefGoogle Scholar
11. Haacke, G., Watkins, S.P. and Burkhard, H., Appl. Phys. Lett., 56, 478 (1990).CrossRefGoogle Scholar
12. Haacke, G., Watkins, S.P. and Burkhard, H., Appl. Phys. Lett., 54, 2029 (1989).CrossRefGoogle Scholar
13. Stringfellow, G.B., J. Electron. Mater., 17, 327 (1988).CrossRefGoogle Scholar
14. Funato, M., Ishii, M., Murawala, P.A., Tsuji, O., Fujita, Sz. and Fujita, Sg., submitted to Int. Conf. II-VI Compounds, Tamano, (1991).Google Scholar
15. Cullity, B.D., in “Elements of x-ray diffraction” (Addison-Wesley Publication Co., Inc., Massachusetts, 1956), chapter 3.Google Scholar
16. Speriosu, V.S. and Vreeland, T. Jr, J. Appl. Phys., 56, 1591 (1984).CrossRefGoogle Scholar
17. Auvray, P., Bandet, M. and Regreny, A., J. Appl. Phys., 62, 456 (1987).CrossRefGoogle Scholar