Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T07:42:55.170Z Has data issue: false hasContentIssue false

Annealing and Strain Effects on Tl-Ba-Ca-Cu-O Crystals and Ceramics

Published online by Cambridge University Press:  21 February 2011

E. L. Venturini
Affiliation:
Sandia National Laboratories, Division 1153, Albuquerque, NM 87185-5800
B. Morosin
Affiliation:
Sandia National Laboratories, Division 1153, Albuquerque, NM 87185-5800
D. S. Ginley
Affiliation:
Sandia National Laboratories, Division 1153, Albuquerque, NM 87185-5800
J. F. Kwak
Affiliation:
Sandia National Laboratories, Division 1153, Albuquerque, NM 87185-5800
J. E. Schirber
Affiliation:
Sandia National Laboratories, Division 1153, Albuquerque, NM 87185-5800
R. J. Baughman
Affiliation:
Sandia National Laboratories, Division 1153, Albuquerque, NM 87185-5800
R. A. Graham
Affiliation:
Sandia National Laboratories, Division 1153, Albuquerque, NM 87185-5800
Get access

Abstract

Superconducting transition temperatures (Tc'S) in the Tl-Ba-Ca-Cu-O system are shown to be a function of processing for both single crystals and bulk ceramics. Crystals with the identical structural phase and nominal composition but slightly different lattice constants can have significant differences in Tc. We report the effects of high temperature annealing in vacuum or flowing oxygen on Tc for single crystal plates of two common phases with nominal stochiometries Tl2Ba2Ca1Cu2O8 and Tl2Ba2Ca2Cu3O10. Contradictory results on nominally similar crystals suggest that strain, Tl content and TI/Ca site disorder are as important as the oxygen stoichiometry in determining Tc This interpretation is supported by complementary annealing studies in bulk ceramic, including a powder where Tc increased by 5 K following high-pressure shock loading which introduced substantial residual strain.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bednorz, J. G. and Muller, K. A., Z. Phys. B 64, 189 (1986).Google Scholar
2. Wu, M. K., Ashburn, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. Q., Chu, C. W., Phys. Rev. Lett. 58, 908 (1987)Google Scholar
3. Maeda, H., Tanaka, Y., Fukutomi, M., , T. and Asano, , Japan. J. Appl. Phys. 27, L209 (1988).Google Scholar
4. Sheng, Z. Z., Hermann, A. M., Ali, A. El, Almasan, C., Estrada, J., Datta, T., Matson, R. J., Phys. Rev. Lett. 60, 937 (1988); Z. Z. Sheng and A. M. Hermann, Nature 332, 138 (1988).Google Scholar
5. Ginley, D. S., Venturini, E. L., Kwak, J. F., Baughman, R. J., Carr, M. J., Hlava, P. F., Schirber, J. E., Morosin, B., Physica C 152, 217 (1988).Google Scholar
6. Parkin, S. S. P., Lee, V. Y., Engler, E. M., Nazzal, A. I., Huang, T. C., Gorman, G., Savoy, R., Beyers, R., Phys. Rev. Lett. 60, 2539 (1988).Google Scholar
7. Hazen, R. M., Finger, L. W., Angel, R. J., Prewitt, C. T., Ross, N. L., Hadidiacos, C. G., Heaney, P. J., Veblen, D. R., Sheng, Z. Z., Ali, A. El, Hermann, A. M., Phys. Rev. Lett. 60, 1657 (1988).Google Scholar
8. Morosin, B., Ginley, D. S., Hlava, P. F., Carr, M. J., Baughman, R. J., Schirber, J. E., Venturini, E. L., Kwak, J. F., Physica C 152, 413 (1988).Google Scholar
9. Parkin, S. S. P., Lee, V. Y., Nazzal, A. I., Savoy, R., Beyers, R., LaPlaca, S. J., Phys. Rev. Lett. 61, 750 (1988).Google Scholar
10. Morosin, B., Ginley, D. S., Schirber, J. E., Venturini, E. L., Physica C 156, 587 (1988).Google Scholar
11. Ginley, D. S., Morosin, B., Baughman, R. J., Venturini, E. L., Schirber, J. E., Kwak, J. F., J. Crystal Growth 91, 456 (1988).Google Scholar
12. Schirber, J. E., Azevedo, L. J., Williams, J. M., Molecular Crystals and Liquid Crystals 119, 27 (1985).Google Scholar
13. Hewat, A. W., Hewat, E. A., Brynestad, J., Mook, H. A., Sleight, A. W., Physica C 152, 438 (1988).Google Scholar
14. Cox, D. E., Torardi, C. C., Subramanian, M. A.. Gopalakrishnan, J., Sleight, A. W., Phys. Rev. B 38, 6624 (1988).Google Scholar
15. Cava, R. J., Batlogg, B., Chen, C. H., Rietman, E. A., Zahurak, S. M., Werder, D., Nature 329, 423 (1987).Google Scholar
16. Torrance, J. B., Tokura, Y., Nazzal, A. I., Bezinge, A., Huang, T. C., Parkin, S. S. P., Phys. Rev. Lett. 61, 1127 (1988).Google Scholar
17. Morosin, B., Graham, R. A., Venturini, E. L., Kwak, J. F., Ginley, D. S., in 2nd Workshop on Industrial Application Feasibility of Dynamic Comoaction Technology, ed. by Sawaoka, A. B., (Tokyo Institute of Technology, Yokohama, Japan, 1988), pp. 95146.Google Scholar
18. Ginley, D. S., Kwak, J. F., Hellmer, R. P., Baughman, R. J., Venturini, E. L., Mitchell, M. A., Morosin, B., Physica C 156, 592 (1988).Google Scholar
19. Ihara, H., Sugise, R., Hirabayashi, M., Terada, N., Jo, M., Hayashi, K., Negishi, A., Tokumoto, M., Kimura, Y., Shimomura, T., Nature 334, 510 (1988).Google Scholar
20. Lee, P., Gao, Y., Sheu, H. S., Petricek, V., Restori, R., Coppens, P., Darovskikh, A., Phillips, J. C., Sleight, A. W., Subramanian, M. A., Science 244, 62 (1989).Google Scholar
21. Shimakawa, Y., Kubo, Y., Manako, T., Nakabayashi, Y., Igarashi, H., Physica C 156, 97 (1988).Google Scholar
22. Sugise, R., Hirabayashi, M., Terada, N., Jo, M., Tokumoto, M., Shimomura, T., Ihara, H., Japan. J. Appl. Phys. 27, L2310 (1989).Google Scholar
23. Hibble, S. J., Cheetham, A. K., Chippindale, A. M., Day, P., Hriljac, J. A., Physica C 156, 604 (1988).Google Scholar
24. Schilling, A., Ott, H. R., Hulliger, F., Physica C 157, 144 (1989).Google Scholar
25. Parkin, S. S. P., Lee, V. Y., Nazzal, A. I., Savoy, R., Huang, T. C., Gorman, G., Beyers, R., Phys. Rev. B 38, 6531 (1988).Google Scholar