Article contents
Anisotropic Thermal Conductivity of A Si/Ge Superlattice
Published online by Cambridge University Press: 10 February 2011
Abstract
Experimental evidence for a significant thermal conductivity reduction have been reported in recent years for GaAs/AlAs, Si/Ge, and Bi 2Te3/Sb2Te3 superlattices. In this work, we present preliminary experimental results on the reduction of the in-plane and cross-plane thermal conductivity for a symmetric Si/Ge superlattice. A differential 2-wire 3ω method is developed to perform the anisotropic thermal conductivity measurements. In this technique, a patterned heater with a width much larger than the film thickness yields the cross-plane thermal conductivity of the film. The in-plane thin film thermal conductivity is inferred from the temperature rise of a narrow width heater that can create more heat spreading in the in-plane direction of the thin film. A differential method to measure the temperature drop across the film is employed in order to increase the accuracy of the measurement.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1999
References
- 11
- Cited by