Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T17:53:16.143Z Has data issue: false hasContentIssue false

Anisotropic saturable absorption of single wall carbon nanotubes aligned in polyvinyl alcohol

Published online by Cambridge University Press:  01 February 2011

Aleksey G. Rozhin
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), 1–1–1 Higashi, Tsukuba, Ibaraki 305–8565, Japan
Youichi Sakakibara
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), 1–1–1 Higashi, Tsukuba, Ibaraki 305–8565, Japan
Hiromichi Kataura
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), 1–1–1 Higashi, Tsukuba, Ibaraki 305–8565, Japan
Shun Matsuzaki
Affiliation:
Faculty of Science and Technology, Tokyo University of Science, Noda 278–8510, Japan
Kohtaro Ishida
Affiliation:
Faculty of Science and Technology, Tokyo University of Science, Noda 278–8510, Japan
Yohji Achiba
Affiliation:
Graduate School of Science, Tokyo Metropolitan University, 1–1 Minami–Ohsawa, Hachioji, Tokyo 192–0397, JAPAN
Madoka Tokumoto
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), 1–1–1 Higashi, Tsukuba, Ibaraki 305–8565, Japan Faculty of Science and Technology, Tokyo University of Science, Noda 278–8510, Japan
Get access

Abstract

We report anisotropic optical absorption and saturable absorption (SA) properties of aligned single wall carbon nanotubes (SWNT) embedded in the mechanically stretched polyvinyl alcohol (PVA) film. Polarized absorption spectra of the film showed a strong anisotropy for the near-infrared band gap transition of semiconductor SWNT with a dichroic ratio of 7.4, indicating the good alignment of the embedded SWNT. The SA property of the band gap transition measured using a polarized femtosecond fiber laser showed a strong polarization angle dependence for the stretched film. When the polarization of light is parallel to the stretching direction, the absorption saturation of the stretched film became more efficient than that of the unstretched film because of the apparently stronger transition moment.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. O'Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, , et al., Science 297, 593596(2002).Google Scholar
2. Chen, Y.-C., Raravikar, N. R., Schadler, L.S., Ajayan, P. M., et al., Appl. Phys. Lett. 81, 975 (2002).Google Scholar
3. Set, S. Y., Yaguchi, H., Jablonski, M., Tanaka, Y., et al., Trends in Optics and Photonics (TOPS) Vol.86, Optical Society of America, Washington, pd.44 (2003).Google Scholar
4. Sakakibara, Y., Rozhin, A., Tokumoto, M., Kataura, H., Achiba, Y., 29th European conference on Optical Communication (ECOC’03), Rimini, Italy, (2003) post-deadline paper Th.4.2.5Google Scholar
5. Boyd, R.W., “Nonlinear optics”, Second Edition, (Academic Press, 2003) pp.261309.Google Scholar
6. Galanin, M.D., “Luminescence of molecules and crystals”, (Cambridge international science publishing, 1996) pp. 2449.Google Scholar
7. Ichida, M., Mizuno, S., Kataura, H., Achiba, Y., et al., Appl. Phys. A 78, 1117 (2004).Google Scholar
8. Li, Z.M., Tang, Z.K., Liu, H.J., Wang, N., et al., Phys. Rev. Lett. 87, 127401 (2001).Google Scholar
9. Lynch, M.D., Patryck, D.L., Nano lett. 2, 1197 (2002).Google Scholar
10. Islam, M.F., Rojas, E., Bergey, D.M., Johnson, A.T., et al., Nano lett. 3, 269 (2003).Google Scholar
11. Shaffer, M.S.P., Windle, A.H., Adv. Matter. 11, 937 (1999).Google Scholar
12. Zhang, X., Liu, T., Srekumar, T.V., Kumar, S., et al., Nano lett. 3, 1285 (2003).Google Scholar
13. Rozhin, A.G., Sakakibara, Y., Tokumoto, M., Kataura, H., Achiba, Y., Thin Solid Film 464–465, 368 (2004).Google Scholar
14. Hecht, E., “Optics”, fourth edition, (Addison Wesley, 2002), pp. 325384.Google Scholar
15. Kataura, H., Kumazawa, Y., Maniwa, Y., Ohtsuka, Y., et al., Carbon 38, 1691 (2000).Google Scholar
16. Kataura, H., Kumazawa, Y., Maniwa, Y., Umezu, I., et al., Synth. Met. 103, 2555 (1999).Google Scholar