Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T09:25:46.718Z Has data issue: false hasContentIssue false

Anisotropic Lattice Relaxation and its Mechanism of ZnSe Epilayer Grown on (001) GaAs Substrate by Molecular Beam Epitaxy

Published online by Cambridge University Press:  21 February 2011

C.S. Kim
Affiliation:
Korea Research Institute of Standards and Science, Yuseong P.O. Box 102, Taejon, Korea 305-600
S.K. Noh
Affiliation:
Korea Research Institute of Standards and Science, Yuseong P.O. Box 102, Taejon, Korea 305-600
H.J. Lee
Affiliation:
Korea Research Institute of Standards and Science, Yuseong P.O. Box 102, Taejon, Korea 305-600
Y.K. Cho
Affiliation:
Korea Research Institute of Standards and Science, Yuseong P.O. Box 102, Taejon, Korea 305-600
Y.I. Kim
Affiliation:
Korea Research Institute of Standards and Science, Yuseong P.O. Box 102, Taejon, Korea 305-600
H.S. Park
Affiliation:
Samsung Advanced Institute of Technology, P.O. Box 111, Suwon, Korea 440-600
T.I. Kim
Affiliation:
Samsung Advanced Institute of Technology, P.O. Box 111, Suwon, Korea 440-600
Get access

Abstract

We have investigated anisotropic lattice relaxation and its mechanism of ZnSe epitaxial layer grown on (001) GaAs substrate by MBE. Double-crystal X-ray rocking curves for (004), {115} and {404} reflections were measured as a function of the azimuthal rotation angle of the sample. We observed the sinusoidal oscillation of the FWHM of the epilayer peak for (004) reflections due to the asymmetric dislocation density along two orthogonal <110> directions, and the direction of the maximum FWHM corresponding to high dislocation density is along [110]. In addition, the strain along [110] is smaller than that along [1-10], indicating that the layer suffered anisotropic lattice relaxation. The direction of larger relaxation([l-10]) is not consistent with that of high dislocation density([110]). The results suggest that the asymmetry in dislocation density is not responsible for the anisotropic relaxation of the ZnSe epilayer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Matthews, J.W. and Blakeslee, A.E., J. Cryst. Growth 27, 118 (1974).Google Scholar
2 Guha, S., DePuydt, J.M., Haase, M.A., Qui, J., and Cheng, H., Appl. Phys. Lett 63, 3107 (1993).Google Scholar
3 Grundmann, M., Christen, J., Bimberg, D., Fischer-Colbrie, A., and Hull, R., J. Appl. Phys. 66, 2214 (1989).Google Scholar
4 Petroff, P.M., Logan, R.A., and Savage, A., J. Microsc. 118, 255 (1979).Google Scholar
5 Brown, P.D., Russel, G.J., and Woods, J., J. Appl. Phys. 66, 129 (1989).Google Scholar
6 Kavanagh, K.L., Capano, M.A., Hobbs, L.W., Barbour, J.C., Marée, P.M. J., Schaff, W., Mayer, J.W., Pettit, D., Woodall, J.M., Stroscio, J.A., and Feenstra, R.M., J. Appl. Phys. 64, 4843 (1988).Google Scholar
7 Kleimann, J., Park, R.M., and Qadri, S.B., J. Appl. Phys. 61, 2067 (1987).Google Scholar
8 Ohki, A., Shibata, N., and Zembutsu, S., J. Appl. Phys. 64, 694 (1988).Google Scholar
9 Reithmaier, J.-P-, Cerva, H., and Lösch, R., Appl. Phys. Lett. 54, 48 (1989).Google Scholar
10 Gal, M., Orders, P.J., Usher, B.F., Joyce, M.J., and Tann, J., Appl. Phys. Lett. 53, 113 (1988).Google Scholar
11 Maigné, P., and Roth, A.P., Appl. Phys. Lett. 62, 873 (1993).Google Scholar
12 Lind, M.D., Sullivan, G.J., Lin, T.Y., and Kroemer, H., J. Appl. Phys. 64, 2746 (1988).Google Scholar
13 Nakano, K., Okuyama, H., Miyajima, T., and Akimoto, K., J. Cryst. Growth 117, 797 (1992).Google Scholar
14 Grundmann, M., Lienert, U., Bimberg, D., Fischer-Colbrie, A. and Miller, J.N., Appl. Phys. Lett. 55, 1765 (1989).Google Scholar
15 Bennett, B.R., and Del Alamo, J.A., J. Elect. Mater. 20, 1075 (1991).Google Scholar
16 Hirsch, P.B.: Progress in Metal Physics, eds. Chalmers, B. and King, R. (Pergamon, New York, 1956) pp. 272287.Google Scholar
17 Wie, C.R., J. Appl. Phys. 65, 2267 (1989).Google Scholar
18 Chang, J.C.P., Chen, J., Fernandez, J.M., Wieder, H.H., and Kavanagh, K.L., Appl. Phys. Lett. 60, 1129 (1992).Google Scholar
19 Novikova, S.I., Soviet Phys.-Solid State 3, 129 (1961).Google Scholar