Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T07:43:36.982Z Has data issue: false hasContentIssue false

Anisotropic Electrical Resistivity of YBCO/PBCO Superlattice Films Grown on Miscut Substrates

Published online by Cambridge University Press:  26 February 2011

H. R. Kerchner
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6061
C. E. Klabunde
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6061
D. K. Christen
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6061
J. D. Budai
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6061
D. H. Lowndes
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6061
D. Norton
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6061
J. O. Thomson
Affiliation:
Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN 37996- 1200.
Get access

Abstract

Anisotropie electrical resistivity is studied in epitaxial superlattice films of YBa2Cu3O7-δ/PrBa2Cu3O7-ε grown in situ by laser ablation on SrTiO3 surfaces aligned slightly away from the [100] direction. Layer thicknesses of each compound range from two to eight atomic cells. Electrical resistivity of these superlattice films always shows a peak at some cryogenic temperature that decreases with increasing PrBa2Cu3O7-ε layer thickness. Clear evidence is seen of vortex pinning or of supercurrent blocking by the step edges or by twin boundaries. The ratio of electrical resistivities for current directions parallel and perpendicular to these boundaries shows a large step-like change just above the superconductive critical temperature. The possibility is discussed that the Kosterlitz-Thouless transition explains this anisotropy change.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lowndes, Douglas H., Norton, David P., and Budai, J. D., Phys. Rev. Lett. 65, 1160 (1990).Google Scholar
2. Lowndes, Douglas H., Norton, David P., Budai, J. D., Pennycook, S. J., Christen, D. K., Sales, B. C., and Feenstra, R., p. 153 in Spring Meeting of the Materials Research Society Symposium N: Laser Ablation for Materials Synthesis Proceeding, edited by Paine, D. C. and Bravman, J. C. (Materials Research Society, Pittsburgh, PA, 1990).Google Scholar
3. Lowndes, D. H., Zheng, X. -Y., Zhu, Shen, Budai, J. D., and Warmack, R. J., “Suppression of the Spiral-Growth Mechanism in Epitaxial YBa2Cu3O7−x Films Grown on Miscut Substrates”, to be published.Google Scholar
4. Budai, J. D., Chisholm, M., Feenstra, R., Lowndes, D. H., Norton, D. P., Boatner, L. A., and Christen, D. K., App,. Phys. Lett. 58, 2174 (1991).Google Scholar
5. Norton, D. P., Lowndes, D. H., Pennycook, S. J., and Budai, J. D., Phys. Rev. Lett. 67, 1358 (1991).Google Scholar
6. Kerchner, H. R., Christen, D. K., Klabunde, C. E., Thomson, J. O., Sun, Y. R., and Thompson, J. R., “Evidence of Kosterlitz-Thouless Transition in YBa2Cu3O7/PrBa2Cu2O7 Superlattice Films”, to be published.Google Scholar
7. Friedmann, T. A., Rabin, M. W., Giapintzakis, J., Rice, J. P., and Ginsberg, D. M., Phys. Rev. B 42. 6217 (1990).Google Scholar
8. Montgomery, H. C., J. Appl. Phys. 42, 2971 (1971).Google Scholar
9. van der Pauw, L. J., Philips Res. Rep. 13, 1 (1958).Google Scholar