Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T17:38:25.487Z Has data issue: false hasContentIssue false

Anisotrop1C Behavior of a High Tc Superconductor

Published online by Cambridge University Press:  28 February 2011

F. A. Otter
Affiliation:
Institute of Materials Scienceand Department of Physics, University of Connecticut, Storrs, CT 06268
J. I. Budnick
Affiliation:
Institute of Materials Scienceand Department of Physics, University of Connecticut, Storrs, CT 06268
B. R. Weinberger
Affiliation:
United Technologies Research Center, East Hartford, CT 06108
L. Lynds
Affiliation:
United Technologies Research Center, East Hartford, CT 06108
D.-P. Yang
Affiliation:
Institute of Materials Scienceand Department of Physics, University of Connecticut, Storrs, CT 06268
S. F. Galasso
Affiliation:
United Technologies Research Center, East Hartford, CT 06108
M. Filipkowski
Affiliation:
Institute of Materials Scienceand Department of Physics, University of Connecticut, Storrs, CT 06268
W. A. Hines
Affiliation:
Institute of Materials Scienceand Department of Physics, University of Connecticut, Storrs, CT 06268
D. M. Potrepka
Affiliation:
United Technologies Research Center, East Hartford, CT 06108
Get access

Abstract

We report low and high field vibrating sample magnetometry results and resistance measurements on a highly oriented, single-phase sample of Y1Ba2Cu3O7−x. We find no anisotropy for the low-field (1mT) Meissner effect or trapped flux. Ratios for high field (to 1.9 T) and ρabc are ∼ 2 and 3.6 respectively. Both are different from single-crystal results, a difference we attribute to grain boundary effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bednorz, J. G. and Muller, K. A., Z. Phys. 364, 189 (1986).Google Scholar
2. Chu, C. W., Hur, P. H., Meng, R. L., Gao, L., Huang, Z. J., and Wang, Y. Z., Phys. Rev. Lett. 58, 405 (1987).Google Scholar
3. Wu, M. K., Ashburn, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. Q., and Chu, C. W., Phys. Rev. Lett. 58, 908 (1987).Google Scholar
4. Cava, R. J., Batlogg, B., van Dover, R. B., Murphy, D. W., Sunshine, S., Siegrist, T., Remeika, J. P., Rietmau, E. A., Zaharak, S., and Espinosa, G. P., Phys. Rev. Lett. 58, 1676 (1987).Google Scholar
5. Dinger, T. R., Worthington, T. K., Gallagher, W. J., and Sandstrom, R. L., Phys. Rev. Lett. 58, 2687 (1987).Google Scholar
6. Worthington, T. K., Gallagher, W. J., and Dinger, T. R., Phys. Rev. Lett. 59, 1160 (1987).Google Scholar
7. Montgomery, H. C., J. Appl. Phys. 42, 2971 (1971).Google Scholar
8. Tozer, S. W., Kleinsasser, A. W., Penney, T., Kaiser, D. and Holtzberg, F., Phys. Rev. Lett. 59, 1768 (1987).Google Scholar