Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T15:33:12.932Z Has data issue: false hasContentIssue false

Angle-Resolved XPS Studies of Interfacial Bonding States in Silicon oxynitrides Fabricated Using Different Thermal Methodologies

Published online by Cambridge University Press:  10 February 2011

Sanjit Singh Dang
Affiliation:
Advanced Materials Research Laboratory, Department of Chemical Engineering, University of Illinois at Chicago, 810 South Clinton Street, Chicago, IL 60607 E-mail: [email protected]
Christos G. Takoudis
Affiliation:
Advanced Materials Research Laboratory, Department of Chemical EngineeringUniversity of Illinois at Chicago, 810 South Clinton Street, Chicago, IL 60607 E-mail: [email protected]
Get access

Abstract

Silicon oxynitride films, fabricated by direct thermal growth and annealing in N2O or NO, were analyzed by Angle-Resolved X-ray Photoelectron Spectroscopy (ARXPS). It is seen that for the samples processed in N2O, N is bonded as Si3N4 only, irrespective of whether the fabrication was done on bare Si or on an oxide pre-grown in O2. But the films processed in NO depict additional bonding arrangements, namely, non-stoichiometric SiOxNy, (Si-)2-N-O, and Si-N(-O)2. These bonding states are found to be concentrated in a higher proportion above the oxynitride/substrate interface. Further, it is seen that annealing of a pre-grown oxide in NO for 30 min incorporates the same bonding states as by direct growth in NO for as long as 120 min. Also, a critical N concentration (between 1.9% and 2.3%) is required for the incorporation of the Si-N(-O)2 structure, observed at 400.7 eV. Besides enhancing the overall understanding of the progress of silicon oxynitridation process in N2O and NO, these findings can help significantly towards developing process-property relationships for incorporation of N with the desired bonding state(s) at specific positions within an oxynitride film.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Buchanan, D.A., IBM J. Res. Develop. 43, 245 (1999).Google Scholar
2. Aoyama, T., Suzuki, K., Tashiro, H., Tada, Y., and Horiuchi, K., J. Electrochem. Soc. 145, 689 (1998).Google Scholar
3. Ito, T., Nakamura, T., and Ishikawa, H., IEEE Trans. Elect. Devices 29, 498 (1982).Google Scholar
4. Ajuria, S.A., Fitch, J.T., Workman, D., and Mele, T.C., J. Electrochem. Soc. 140, Li 13 (1993).Google Scholar
5. Hegde, R.I., Maiti, B., and Tobin, P.J., J. Electrochem. Soc. 144, 1081 (1997).10.1149/1.1837535Google Scholar
6. Banerjee, I. and Kuzminov, D., Appl. Phys. Lett. 62,1541 (1993).10.1063/1.108634Google Scholar
7. Moulder, J. F., Stickle, W. F., Sobol, P.E., and Bomben, K. D., Handbook of X-ray Photoelectron Spectroscopy, (Perkin Elmer Corp., Eden Prairie, MN, 1992), p. 43.Google Scholar
8. Hartig, M.J. and Tobin, P.J., J. Electrochem. Soc. 143, 1753 (1996).10.1149/1.1836712Google Scholar
9. Bhat, M., Ahn, J., Kwong, D.L., Arendt, M., and White, J.M., Appl. Phys. Lett. 64, 1168 (1994).Google Scholar
10. Prabhakaran, K., Kobayashi, Y., and Ogino, T., Appl. Surf. Sci. 130–132, 182 (1998).10.1016/S0169-4332(98)00047-6Google Scholar
11. Rignanese, G.-M., Pasquarello, A., Charlier, J.-C., Gonze, X., and Car, R., Phys. Rev. Lett. 79,5174 (1997).Google Scholar
12. Shallenberger, J.R., Cole, D.A., and Novak, S.W., J. Vac. Sci. Tech. A 17, 1086 (1999).10.1116/1.582038Google Scholar
13. Hussey, R.J., Hoffman, T.L., Tao, Y., and Graham, M.J., J. Electrochem. Soc. 143, 221 (1996).10.1149/1.1836412Google Scholar
14. Lu, Z.H., Tay, S.P., Cao, R., and Pianetta, P., Appl. Phys. Lett. 67, 2836 (1995).10.1063/1.114801Google Scholar
15. Smith, B.C. and Lamb, H.H., J. Appl. Phys. 83, 7635 (1998).Google Scholar
16. Kaluri, S.R. and Hess, D.W., Appl. Phys. Lett. 69, 1053 (1996).Google Scholar
17. Hegde, R.I., Tobin, P.J., Reid, K.G., Maiti, B., and Ajuria, S.A., Appl. Phys. Lett. 66, 2882 (1995).Google Scholar
18. Bhat, M., Yoon, G.W., Kim, J., and Kwong, D.L., Appl. Phys. Lett. 64, 2116 (1994).10.1063/1.111701Google Scholar
19. Yoshida, T., Hashizume, T., and Hasegawa, H., Jpn. J. Appl. Phys. 36, 1453 (1997).10.1143/JJAP.36.1453Google Scholar
20. Sutherland, D.G.J., et al. J. Appl. Phys. 78, 6761 (1995).Google Scholar
21. Lu, Z.H., Tay, S.P., Cao, R., and Pianetta, P., Appl. Phys. Lett. 67, 2836 (1995).Google Scholar