Published online by Cambridge University Press: 31 March 2014
We analyze and compare optoelectronic properties and hot carrier relaxation dynamics in different forms of TiO2 anatase materials: nanowires and thin films. The models are chosen in such way that the same crystallographic surfaces are exposed and any difference in properties is attributed to the change of the dimensionality of the nanostructure. Specifically, we give a brief review of the electronic properties and non-adiabatic excited state dynamics of <001> anatase TiO2 nanowire as well as (100) and (001) anatase TiO2 surfaces. The calculated band gap of nanowire is larger than the ones of surfaces. The hole relaxation rate is higher than the electron relaxation rate for both the surfaces and nanowire, and the electron and hole relaxation rates of surfaces are larger than the ones of nanowire.