Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T17:42:08.220Z Has data issue: false hasContentIssue false

Analytical Electron Microscopy of Leached Layers on Synthetic Basalt Glass

Published online by Cambridge University Press:  28 February 2011

T. Murakami
Affiliation:
Dept. of Geology, University of New Mexico, Albuquerque, NM 87131
R. C. Ewing
Affiliation:
Dept. of Geology, University of New Mexico, Albuquerque, NM 87131
B. C. Bunker
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Get access

Abstract

Analytical electron microscopy was used to characterize leached layers formed on a synthetic basalt glass after 300 days in deionized water, sodium chloride solutions, or sodium chloride solutions containing magnesium chloride. Ultramicrotomed cross-sections show that the leached layers consist of a mixture of amorphous and crystalline phases whose composition and microstructure are sensitive to solution chemistry. In general, Na, Ca and Mg are selectively leached in all solutions, leaving behind surface alteration products which are rich in Fe, Ti, and Al. In deionized water and the NaCl solution, gibbsite (AI(OH)3) is a major phase; in the Mg-containing solution, Si and Al are retained as smectite clays. Results are compared to the alteration of natural basalt glasses in marine environments, particularly as they relate to the use of basalt glass alteration as a means of verifying the long-term leaching behavior of nuclear waste form borosilicate glasses.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ewing, R. C. and Jercinovic, M. J. in Scientific Basis for Nuclear Waste Management X, eds. Bates, J. K. and Seefeldt, W. B. (Materials Research Society, Pittsburg, 1987) pp. 6783.Google Scholar
2. Lutze, W., Malow, G., Ewing, R. C., Jercinovic, M. J., and Keil, K., Nature 314, 252255 (1985).Google Scholar
3. Malow, G., Lutze, W., and Ewing, R., J. Non Cryst. Solids 67, 305322 (1984).CrossRefGoogle Scholar
4. Crovisier, J. L., Thomassin, J. H., Juteau, T., Eberhart, J. P., Touray, J. C., and Baillif, P., Geochim. Cosmochim. Acta 41, 377387 (1983).Google Scholar
5. Crosivier, J. L., Fritz, B., Grambow, B., and Eberhart, J. P. in Scientific Basis for Nuclear Waste Management IX, ed. Werme, L. (Materials Research Society, Pittsburg, 1985).pp. 273280.Google Scholar
6. Crovisier, J. L., Eberhart, J. P., and Honnorez, J., in Extended Abstracts of the Fifth InternationalSymposium on Water-Rock Interaction. Reykiavik. Iceland, (International Association of Geochemistry and Cosmochemistry, 1986) pp.142145.Google Scholar
7. Byers, C. D., Jercinovic, M. J., and Ewing, R. C., A Study of Natural Glass Analoeues as Applied to Alteration of Nuclear Waste Glass, ANL-86−46/NUREG/CR-4842 (Argonne Nat. Lab., Argonne, 1987).Google Scholar
8. Grambow, B., Jercinovic, M. J., Ewing, R. C., and Byers, C. D. in Scientific Basis for Nuclear Waste Management IX, ed. Werme, L., (Materials Research Society, Pittsburg, 1985) pp. 263272.Google Scholar
9. Granmbow, B. Lutze, W., Ewing, R. C. and Werme, L. in this volume. 748Google Scholar
10. Mendel, J. et al., Final Report of Defense High-Level Waste Leaching Mechanism Program, PNL Report 5157 (Pacific Northwest Laboratories, Richland, WA, 1984).Google Scholar
11. Wallace, R. M. and Wicks, G. G., in Workshop on the Leaching Mechanism of Nuclear Waste Forms, PNL Report 4382 (Pacific Northwest Laboratories, Richland, WA, 1984).Google Scholar
12. Hay, R. L. and lijima, A., Geol. Soc. Am. Mem. 116, 338376 (1968).Google Scholar
13. Hay, R. L. and lijima, A., Contrib. Min. Pet. 17, 141154 (1968).Google Scholar
14. Honnorez, J., Vulkaninstitut Immanuel Friedlander, Birkhausen Verlag, Basel 9 (1972).Google Scholar
15. Jakobsson, S. P., Surtsey Research Progress Report VI, 1–8, (1972).Google Scholar
16. Furnes, H., Chem. Geol. 22, 249264 (1978).Google Scholar
17. Furnes, H., N. Jahr. Mineral. Abh. 138, 1430 (1980).Google Scholar
18. Furnes, H., Chem. Geol. 43, 271285 (1984).Google Scholar
19. Allen, C. C., Gooding, J. L., Jercinovic, M. J., and Keil, K., Icarus 45, 347369 (1981).Google Scholar
20. Staudigal, H. and Hart, S. R., Geochim. et Cosmochim. Acta 47, 337350 (1983).Google Scholar
21. Hekinian, R. and Hoffert, M., Marine Geol. 12, 91109 (1975).Google Scholar
22. Moore, J. G., U. S. Geol. Surv. Prof. Paper 550–D, 163171 (1966).Google Scholar
23. Seyfried, W. E. and Bischoff, J. L, Geochim. Cosmochim. Acta 43, 19371947 (1979).Google Scholar
24. Byers, C. D., Ewing, R. C., and Jercinovic, M. J., Advances in Ceramics 20, 733744 (1986).Google Scholar
25. Mackinnon, I. D. R., Lumpkin, G. R., and Van Deusen, S. B., in Microbeam Analysis - 1986, eds. Romig, A. D. Jr. and Chambers, W. F. (San Francisco Press, San Francisco, 1986) pp. 451454.Google Scholar
26. Mackinnon, I. D. R. and Kaser, S. A., in Microbeam Analysis - 1987, ed. Geiss, Roy H. (San Francisco Press, San Francisco, 1986) pp. 332334.Google Scholar
27. Bunker, B. C. in Scientific Basis for Nuclear Waste Management X, eds. Bates, J. K. and Seefeldt, W. B. (Materials Research Society, Pittsburg, 1987) pp. 493505.Google Scholar
28. Baes, C. F., Jr. and Mesmer, R. E., The Hydrolysis of Cations, (John Wiley & Sons, New York, 1976).Google Scholar
29. Parks, G. A., Chem. Rev. 65, 177 (1965).Google Scholar
30. Iler, R. K., The Chemistry of Silica (John Wiley & Sons, New York, 1979).Google Scholar
31. Grimshaw, R. W., The Chemistry and Physics of Clays (Ernst Benn Ltd., London, 1971).Google Scholar
32. Jakobsson, S. P., Bull. Geol. Soc. Denmark 27, 91105 (1978).Google Scholar