Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T15:21:20.855Z Has data issue: false hasContentIssue false

Analytical Electron Microscope Study of High- and Low-Coercivity SmCo 2:17 Magnets

Published online by Cambridge University Press:  25 February 2011

Josef Fidler
Affiliation:
Institute of Applied and Technical Physics, University of Technology, Karlsplatz 13, A-1040 Vienna, Austria.
J. Bernardi
Affiliation:
Institute of Applied and Technical Physics, University of Technology, Karlsplatz 13, A-1040 Vienna, Austria.
P. Skalicky
Affiliation:
Institute of Applied and Technical Physics, University of Technology, Karlsplatz 13, A-1040 Vienna, Austria.
Get access

Abstract

Sintered, precipitation hardened SmCo 2:17 magnets contain a multiphase microstructure. Our electron microscopic investigations reveal that the size of the rhombic, cellular precipitation structure and the formation of cell interior and cell boundary phases is determined by the nominal composition of the alloy and the postsintering heat treatment conditions and primarily control the intrinsic coercivity of the magnet. Selected area electron diffraction together with high resolution electron microscopy showed a high density of basal stacking faults (microtwinning) of the cell interior phase of low coercivity (iHc < 700 kA/m) magnets with a (c/a)*- ratio of the basic structural unit of > 0.843. High coercivity magnets (iHc>) 1000 kA/m), containing a high density of the platelet phase perpendicular to the c-axis, exhibit cell diameters up to 200 nm with a (c/a)*-ratio of the basic structural unit of the cell interior phase of < 0.843.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Livingston, J.D. and Martin, D.L., J. Appl. Phys. 48, 1350 (1977).Google Scholar
2. Mishra, R.K., Thomas, G., Yoneyama, T., Fukuno, A. and Ojima, T., J.Appl.Phys. 52, 2517 (1981).Google Scholar
3. Hadjipanayis, G.C., Yadlowsky, E.J. and Wollins, S.H., J. Appl. Pys. 53, 2386 (1982).Google Scholar
4. Fidler, J. and Skalicky, P., J. Magn. Magn. Mat. 27, 127 (1982).Google Scholar
5. Fidler, J., Skalicky, P. and Rothwarf, F., IEEE Trans. Magn. MAG–19, 2041 (1983).Google Scholar
6. Allen, C.W., Kuruzar, D.L. and Miller, A.E., IEEE Trans. Mag. MAG–10, 716 (1974).Google Scholar
7. Khan, Y., Acta Cryst. B29, 2502 (1973).Google Scholar
8. Johnson, Q., Smith, G.S. and Wood, D.H., Acta Cryst. B25, 464 (1969).Google Scholar
9. Ray, A.E., Proc. of Soft and Hard Magnetic Materials with Applications, Lake Buena Vista, Florida, Oct.1986, to be published by ASM.Google Scholar
10. Khan, Y., Pys. Stat. Sol.(a) 21, 69 (1974).Google Scholar
11. Fidler, J., Skalicky, P. and Rothwarf, F., Mikrochimica Acta [Wien] Suppl. 11, 371, (1985).Google Scholar
12. Ray, A.E., J. Appl. Phys. 55, 2094 (1984).Google Scholar
13. Ray, A.E., IEEE Trans. Magn. MAG–20, 1614 (1984).Google Scholar
14. Fidler, J., J. Mag. Magn. Mat. 30, 58 (1982).Google Scholar
15. Kronmfller, H., Durst, K.D., Ervens, W. amd Fernengel, W., IEEE Trans. Magn. MAG–20, 1569 (1984).Google Scholar
16. Rabenberg, L., Mishra, R.K. and Thomas, G., J. Appl.Phys. 53, 2389 (1982).Google Scholar
17. Fidler, J., Grössinger, R., Kirchmayr, H. and Skalicky, P., ERO - Report of U.S. Army, Pr.No. DAJA (1983) 37–82-C-0050.Google Scholar
18. Fidler, J. and Skalicky, P., Radex-Rundschau 2/3, 63 (1986).Google Scholar